木质素可控氢脱氧Pt单原子位电荷密度的微调

Qiqi Dai, Zechuan Xu, Dr. Shibin Wang, Dr. Xu Zeng, Fan He, Prof. Fengxia Yue, Dr. Zedong Zhang, Dr. Chenliang Ye, Prof. Yu Wang, Prof. Chuanfu Liu, Peng Wang, Minjie Hou, Asso. Prof. Ge Meng, Asso. Prof. Wu Lan, Prof. Dingsheng Wang
{"title":"木质素可控氢脱氧Pt单原子位电荷密度的微调","authors":"Qiqi Dai,&nbsp;Zechuan Xu,&nbsp;Dr. Shibin Wang,&nbsp;Dr. Xu Zeng,&nbsp;Fan He,&nbsp;Prof. Fengxia Yue,&nbsp;Dr. Zedong Zhang,&nbsp;Dr. Chenliang Ye,&nbsp;Prof. Yu Wang,&nbsp;Prof. Chuanfu Liu,&nbsp;Peng Wang,&nbsp;Minjie Hou,&nbsp;Asso. Prof. Ge Meng,&nbsp;Asso. Prof. Wu Lan,&nbsp;Prof. Dingsheng Wang","doi":"10.1002/ange.202504347","DOIUrl":null,"url":null,"abstract":"<p>Achieving high-selectivity conversion of lignin to value-added chemicals and biofuels remains a desirable but challenging target due to its complex structure with multiple reaction paths. Herein, we designed the robust Pt single-atom sites supported on NiAl layered double hydroxide (Pt<sub>1</sub>/NiAl-LDH) and intermetallic compound (Pt<sub>1</sub>/NiAl-IMC) with distinct local charge density for selectivity-controllable hydrodeoxygenation of lignin. The Pt<sub>1</sub>/NiAl-LDH with electron-deficient Pt sites hydrogenated 4-propylguaiacol into 4-propylcyclohexanol with 100% conversion and over 90% selectivity, while Pt<sub>1</sub>/NiAl-IMC with electron-rich Pt sites favored complete deoxygenation, yielding almost equivalent of propylcyclohexane. Similar results were achieved using lignin samples. Density functional theory calculations revealed that the deoxygenation capacity of Pt<sub>1</sub>/NiAl-IMC stems from the high electronic density of Pt single atoms, which injects electrons into the C─O bond and weakens its bonding energy. This study demonstrates that the catalytic performance of single-atom catalysts in biopolymers hydrodeoxygenation can be optimized toward different products by well-controlled electronic structures.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Tuned Charge Density of Pt Single-Atom Sites for Controllable Hydrodeoxygenation of Lignin\",\"authors\":\"Qiqi Dai,&nbsp;Zechuan Xu,&nbsp;Dr. Shibin Wang,&nbsp;Dr. Xu Zeng,&nbsp;Fan He,&nbsp;Prof. Fengxia Yue,&nbsp;Dr. Zedong Zhang,&nbsp;Dr. Chenliang Ye,&nbsp;Prof. Yu Wang,&nbsp;Prof. Chuanfu Liu,&nbsp;Peng Wang,&nbsp;Minjie Hou,&nbsp;Asso. Prof. Ge Meng,&nbsp;Asso. Prof. Wu Lan,&nbsp;Prof. Dingsheng Wang\",\"doi\":\"10.1002/ange.202504347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving high-selectivity conversion of lignin to value-added chemicals and biofuels remains a desirable but challenging target due to its complex structure with multiple reaction paths. Herein, we designed the robust Pt single-atom sites supported on NiAl layered double hydroxide (Pt<sub>1</sub>/NiAl-LDH) and intermetallic compound (Pt<sub>1</sub>/NiAl-IMC) with distinct local charge density for selectivity-controllable hydrodeoxygenation of lignin. The Pt<sub>1</sub>/NiAl-LDH with electron-deficient Pt sites hydrogenated 4-propylguaiacol into 4-propylcyclohexanol with 100% conversion and over 90% selectivity, while Pt<sub>1</sub>/NiAl-IMC with electron-rich Pt sites favored complete deoxygenation, yielding almost equivalent of propylcyclohexane. Similar results were achieved using lignin samples. Density functional theory calculations revealed that the deoxygenation capacity of Pt<sub>1</sub>/NiAl-IMC stems from the high electronic density of Pt single atoms, which injects electrons into the C─O bond and weakens its bonding energy. This study demonstrates that the catalytic performance of single-atom catalysts in biopolymers hydrodeoxygenation can be optimized toward different products by well-controlled electronic structures.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202504347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202504347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实现木质素高选择性转化为增值化学品和生物燃料仍然是一个理想的,但具有挑战性的目标,由于其复杂的结构和多种反应途径。在此,我们设计了具有不同局部电荷密度的NiAl层状双氢氧化物(Pt1/NiAl- ldh)和金属间化合物(Pt1/NiAl- imc)支持的坚固的Pt单原子位点,用于木质素的选择性可控加氢脱氧。缺电子Pt位的Pt1/NiAl-LDH使4-丙基愈伤木酚氢化成4-丙基环己醇,转化率为100%,选择性超过90%,而富电子Pt位的Pt1/NiAl-IMC有利于完全脱氧,产量几乎相当于丙基环己烷。木质素样品也得到了类似的结果。密度泛函理论计算表明,Pt1/NiAl-IMC的脱氧能力源于Pt单原子的高电子密度,将电子注入到C─O键中,削弱了它的键能。本研究表明,单原子催化剂在生物聚合物加氢脱氧中的催化性能可以通过良好的电子结构控制来优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Tuned Charge Density of Pt Single-Atom Sites for Controllable Hydrodeoxygenation of Lignin

Achieving high-selectivity conversion of lignin to value-added chemicals and biofuels remains a desirable but challenging target due to its complex structure with multiple reaction paths. Herein, we designed the robust Pt single-atom sites supported on NiAl layered double hydroxide (Pt1/NiAl-LDH) and intermetallic compound (Pt1/NiAl-IMC) with distinct local charge density for selectivity-controllable hydrodeoxygenation of lignin. The Pt1/NiAl-LDH with electron-deficient Pt sites hydrogenated 4-propylguaiacol into 4-propylcyclohexanol with 100% conversion and over 90% selectivity, while Pt1/NiAl-IMC with electron-rich Pt sites favored complete deoxygenation, yielding almost equivalent of propylcyclohexane. Similar results were achieved using lignin samples. Density functional theory calculations revealed that the deoxygenation capacity of Pt1/NiAl-IMC stems from the high electronic density of Pt single atoms, which injects electrons into the C─O bond and weakens its bonding energy. This study demonstrates that the catalytic performance of single-atom catalysts in biopolymers hydrodeoxygenation can be optimized toward different products by well-controlled electronic structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信