求助PDF
{"title":"有限阿贝尔群上幻矩形集的存在性","authors":"Shikang Yu, Tao Feng, Hengrui Liu","doi":"10.1002/jcd.21987","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> be positive integers. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mo>+</mo>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> be a finite abelian group of order <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mi>b</mi>\n \n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>-magic rectangle set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>MRS</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>;</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is a collection of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> arrays of size <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>a</mi>\n \n <mo>×</mo>\n \n <mi>b</mi>\n </mrow>\n </mrow>\n </semantics></math>, whose entries are elements of a group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, each appearing exactly once, such that the sum of each row in every array equals a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>γ</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, and the sum of each column in every array equals a constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>∈</mo>\n \n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>. This paper establishes the necessary and sufficient conditions for the existence of an <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>MRS</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mi>G</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>;</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for any finite abelian group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, thereby confirming a conjecture posted by Cichacz and Hinc.</p>\n </div>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 9","pages":"329-337"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Magic Rectangle Sets Over Finite Abelian Groups\",\"authors\":\"Shikang Yu, Tao Feng, Hengrui Liu\",\"doi\":\"10.1002/jcd.21987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be positive integers. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>,</mo>\\n \\n <mo>+</mo>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> be a finite abelian group of order <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mi>b</mi>\\n \\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. A <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-magic rectangle set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>MRS</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n \\n <mo>;</mo>\\n \\n <mi>c</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is a collection of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> arrays of size <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>×</mo>\\n \\n <mi>b</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, whose entries are elements of a group <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, each appearing exactly once, such that the sum of each row in every array equals a constant <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>γ</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, and the sum of each column in every array equals a constant <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. This paper establishes the necessary and sufficient conditions for the existence of an <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>MRS</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mi>G</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n \\n <mo>;</mo>\\n \\n <mi>c</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, for any finite abelian group <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, thereby confirming a conjecture posted by Cichacz and Hinc.</p>\\n </div>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 9\",\"pages\":\"329-337\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21987\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21987","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用