通过可解释人工智能的预测见解减轻药物发现中的分子聚集

Hunter Sturm, Jonas Teufel, Kaitlin A. Isfeld, Dr. Pascal Friederich, Dr. Rebecca L. Davis
{"title":"通过可解释人工智能的预测见解减轻药物发现中的分子聚集","authors":"Hunter Sturm,&nbsp;Jonas Teufel,&nbsp;Kaitlin A. Isfeld,&nbsp;Dr. Pascal Friederich,&nbsp;Dr. Rebecca L. Davis","doi":"10.1002/ange.202503259","DOIUrl":null,"url":null,"abstract":"<p>Herein, we present the application of multi-channel graph attention network (MEGAN), our explainable AI (xAI) model, for the identification of small colloidally aggregating molecules (SCAMs). This work offers solutions to the long-standing problem of false positives caused by SCAMs in high-throughput screening for drug discovery and demonstrates the power of xAI in the classification of molecular properties that are not chemically intuitive based on our current understanding. We leverage xAI insights and molecular counterfactuals to design alternatives to problematic compounds in drug screening libraries. Additionally, we experimentally validate the MEGAN prediction classification for one of the counterfactuals and demonstrate the utility of counterfactuals for altering the aggregation properties of a compound through minor structural modifications. The integration of this method in high-throughput screening approaches will help combat and circumvent false positives, providing better lead molecules more rapidly and thus accelerating drug discovery cycles.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202503259","citationCount":"0","resultStr":"{\"title\":\"Mitigating Molecular Aggregation in Drug Discovery With Predictive Insights From Explainable AI\",\"authors\":\"Hunter Sturm,&nbsp;Jonas Teufel,&nbsp;Kaitlin A. Isfeld,&nbsp;Dr. Pascal Friederich,&nbsp;Dr. Rebecca L. Davis\",\"doi\":\"10.1002/ange.202503259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herein, we present the application of multi-channel graph attention network (MEGAN), our explainable AI (xAI) model, for the identification of small colloidally aggregating molecules (SCAMs). This work offers solutions to the long-standing problem of false positives caused by SCAMs in high-throughput screening for drug discovery and demonstrates the power of xAI in the classification of molecular properties that are not chemically intuitive based on our current understanding. We leverage xAI insights and molecular counterfactuals to design alternatives to problematic compounds in drug screening libraries. Additionally, we experimentally validate the MEGAN prediction classification for one of the counterfactuals and demonstrate the utility of counterfactuals for altering the aggregation properties of a compound through minor structural modifications. The integration of this method in high-throughput screening approaches will help combat and circumvent false positives, providing better lead molecules more rapidly and thus accelerating drug discovery cycles.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202503259\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们提出了多通道图注意网络(MEGAN),我们的可解释人工智能(xAI)模型,用于识别小胶体聚集分子(SCAMs)。这项工作为高通量药物筛选中SCAMs引起的假阳性长期存在的问题提供了解决方案,并证明了xAI在根据我们目前的理解不具有化学直觉的分子特性分类方面的力量。我们利用xAI的见解和分子反事实来设计药物筛选库中有问题化合物的替代品。此外,我们通过实验验证了反事实之一的MEGAN预测分类,并展示了反事实通过微小的结构修饰改变化合物聚集特性的效用。将这种方法整合到高通量筛选方法中,将有助于打击和避免假阳性,更快地提供更好的先导分子,从而加快药物发现周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigating Molecular Aggregation in Drug Discovery With Predictive Insights From Explainable AI

Mitigating Molecular Aggregation in Drug Discovery With Predictive Insights From Explainable AI

Herein, we present the application of multi-channel graph attention network (MEGAN), our explainable AI (xAI) model, for the identification of small colloidally aggregating molecules (SCAMs). This work offers solutions to the long-standing problem of false positives caused by SCAMs in high-throughput screening for drug discovery and demonstrates the power of xAI in the classification of molecular properties that are not chemically intuitive based on our current understanding. We leverage xAI insights and molecular counterfactuals to design alternatives to problematic compounds in drug screening libraries. Additionally, we experimentally validate the MEGAN prediction classification for one of the counterfactuals and demonstrate the utility of counterfactuals for altering the aggregation properties of a compound through minor structural modifications. The integration of this method in high-throughput screening approaches will help combat and circumvent false positives, providing better lead molecules more rapidly and thus accelerating drug discovery cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信