Dezhi Liu, Dr. Zhenli Zhang, Yuxia Zhang, Prof. Dr. Yuesheng Li, Prof. Dr. Dong-Po Song
{"title":"桥接纳米到微米:广泛可调结构和光子学的超分子瓶刷的建筑工程","authors":"Dezhi Liu, Dr. Zhenli Zhang, Yuxia Zhang, Prof. Dr. Yuesheng Li, Prof. Dr. Dong-Po Song","doi":"10.1002/ange.202503633","DOIUrl":null,"url":null,"abstract":"<p>Supramolecular bottlebrush block copolymers (BBCPs) offer greater architectural adaptability than covalent BBCPs. However, the dynamic nature of non-covalent interactions hinders precise control over their chain architecture, resulting in poorly controlled self-assembly, unpredictable morphologies, and limited utility. Herein, we introduce a novel molecular design for amphiphilic supramolecular BBCPs that overcomes key challenges in the field. The resulting materials exhibit superior thermodynamic stability in weakly polar solvents. This enables the first demonstration of well-controlled self-assembly of supramolecular surfactants within a complex emulsion system, leading to the formation of photonic supraballs with homogenous porous structures. Critically, precise chain architectural engineering enables pore diameter tuning over an unprecedented nanometer-to-micrometer range (67 nm–1.92 µm), significantly surpassing the maximum domain sizes achievable with self-assembled covalent BBCPs. This extends the photonic bandgap into the mid-wave infrared range, paving the way for next-generation materials with potential applications in thermal management.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Nano to Micron: Architectural Engineering of Supramolecular Bottlebrushes for Extensively Tunable Structures and Photonics\",\"authors\":\"Dezhi Liu, Dr. Zhenli Zhang, Yuxia Zhang, Prof. Dr. Yuesheng Li, Prof. Dr. Dong-Po Song\",\"doi\":\"10.1002/ange.202503633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supramolecular bottlebrush block copolymers (BBCPs) offer greater architectural adaptability than covalent BBCPs. However, the dynamic nature of non-covalent interactions hinders precise control over their chain architecture, resulting in poorly controlled self-assembly, unpredictable morphologies, and limited utility. Herein, we introduce a novel molecular design for amphiphilic supramolecular BBCPs that overcomes key challenges in the field. The resulting materials exhibit superior thermodynamic stability in weakly polar solvents. This enables the first demonstration of well-controlled self-assembly of supramolecular surfactants within a complex emulsion system, leading to the formation of photonic supraballs with homogenous porous structures. Critically, precise chain architectural engineering enables pore diameter tuning over an unprecedented nanometer-to-micrometer range (67 nm–1.92 µm), significantly surpassing the maximum domain sizes achievable with self-assembled covalent BBCPs. This extends the photonic bandgap into the mid-wave infrared range, paving the way for next-generation materials with potential applications in thermal management.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202503633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bridging Nano to Micron: Architectural Engineering of Supramolecular Bottlebrushes for Extensively Tunable Structures and Photonics
Supramolecular bottlebrush block copolymers (BBCPs) offer greater architectural adaptability than covalent BBCPs. However, the dynamic nature of non-covalent interactions hinders precise control over their chain architecture, resulting in poorly controlled self-assembly, unpredictable morphologies, and limited utility. Herein, we introduce a novel molecular design for amphiphilic supramolecular BBCPs that overcomes key challenges in the field. The resulting materials exhibit superior thermodynamic stability in weakly polar solvents. This enables the first demonstration of well-controlled self-assembly of supramolecular surfactants within a complex emulsion system, leading to the formation of photonic supraballs with homogenous porous structures. Critically, precise chain architectural engineering enables pore diameter tuning over an unprecedented nanometer-to-micrometer range (67 nm–1.92 µm), significantly surpassing the maximum domain sizes achievable with self-assembled covalent BBCPs. This extends the photonic bandgap into the mid-wave infrared range, paving the way for next-generation materials with potential applications in thermal management.