Arnab Char, T. Karthick
求助PDF
{"title":"关于没有诱导p5或k5−e的图","authors":"Arnab Char, T. Karthick","doi":"10.1002/jgt.23240","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we are interested in some problems related to chromatic number and clique number for the class of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>-free graphs and prove the following the results: (a) If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a connected (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free graph with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>7</mn>\n </mrow>\n </mrow>\n </semantics></math>, then either <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is the complement of a bipartite graph or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> has a clique cut-set. Moreover, there is a connected (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free imperfect graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n </semantics></math> and has no clique cut-set. This strengthens a result of Malyshev and Lobanova (<i>Discrete Applied Mathematics</i> 219 [2017] 158–166). (b) If <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free graph with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow>\n </mrow>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>7</mn>\n \n <mo>,</mo>\n \n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Moreover, the bound is tight when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <mn>4</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. This result, together with known results, partially answers a question of Ju and Huang (<i>Theoretical Computer Science</i> 993 [2024] Article No.: 114465) and also improves a result of Xu [Manuscript 2022]. While <span>Chromatic Number</span> is known to be <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <mi>P</mi>\n </mrow>\n </mrow>\n </semantics></math>-hard for the class of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graphs, our results, together with some known results, imply that <span>Chromatic Number</span> can be solved in polynomial time for the class of (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n </semantics></math>)-free graphs, which may be of independent interest.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"5-22"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Graphs With No Induced \\n \\n \\n \\n \\n P\\n 5\\n \\n \\n \\n or \\n \\n \\n \\n \\n K\\n 5\\n \\n −\\n e\",\"authors\":\"Arnab Char, T. Karthick\",\"doi\":\"10.1002/jgt.23240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we are interested in some problems related to chromatic number and clique number for the class of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graphs and prove the following the results: (a) If <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a connected (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>)-free graph with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>7</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, then either <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is the complement of a bipartite graph or <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> has a clique cut-set. Moreover, there is a connected (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>)-free imperfect graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and has no clique cut-set. This strengthens a result of Malyshev and Lobanova (<i>Discrete Applied Mathematics</i> 219 [2017] 158–166). (b) If <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>)-free graph with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mn>4</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>χ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>7</mn>\\n \\n <mo>,</mo>\\n \\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Moreover, the bound is tight when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∉</mo>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <mn>4</mn>\\n \\n <mo>,</mo>\\n \\n <mn>5</mn>\\n \\n <mo>,</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. This result, together with known results, partially answers a question of Ju and Huang (<i>Theoretical Computer Science</i> 993 [2024] Article No.: 114465) and also improves a result of Xu [Manuscript 2022]. While <span>Chromatic Number</span> is known to be <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <mi>P</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>-hard for the class of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graphs, our results, together with some known results, imply that <span>Chromatic Number</span> can be solved in polynomial time for the class of (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mn>5</mn>\\n </msub>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>)-free graphs, which may be of independent interest.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 1\",\"pages\":\"5-22\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用