笛卡尔积G × c2n + 1的普氏图刻画

IF 0.9 3区 数学 Q2 MATHEMATICS
Wei Li, Yao Wang, Alishba Arshad, Wuyang Sun
{"title":"笛卡尔积G × c2n + 1的普氏图刻画","authors":"Wei Li,&nbsp;Yao Wang,&nbsp;Alishba Arshad,&nbsp;Wuyang Sun","doi":"10.1002/jgt.23247","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The recognition of Pfaffian bipartite graphs in polynomial time has been obtained, but this fact is still unknown for Pfaffian nonbipartite graphs. For a path <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and a cycle <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, the Pfaffian graphs of Cartesian products <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>P</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> were characterized by Lu and Zhang in 2014. Recently, Li and Wang characterized the Pfaffian graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>P</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </mrow>\n </semantics></math> and the Pfaffian graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>P</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is bipartite. However, the question of characterizing the Pfaffian graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is still open. In this paper, we try to investigate this question for the graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with a perfect matching. We first prove that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n </mrow>\n </semantics></math>) and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> are Pfaffian if and only if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is an odd path or an even cycle, respectively. After showing that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> is not Pfaffian if G is nonbipartite, we obtain the characterization of the Pfaffian graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>×</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> in terms of the forbidden subgraphs of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"110 1","pages":"33-40"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Characterization on Pfaffian Graphs of Cartesian Product \\n \\n \\n \\n G\\n ×\\n \\n C\\n \\n 2\\n n\\n +\\n 1\",\"authors\":\"Wei Li,&nbsp;Yao Wang,&nbsp;Alishba Arshad,&nbsp;Wuyang Sun\",\"doi\":\"10.1002/jgt.23247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The recognition of Pfaffian bipartite graphs in polynomial time has been obtained, but this fact is still unknown for Pfaffian nonbipartite graphs. For a path <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and a cycle <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>C</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, the Pfaffian graphs of Cartesian products <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> were characterized by Lu and Zhang in 2014. Recently, Li and Wang characterized the Pfaffian graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and the Pfaffian graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is bipartite. However, the question of characterizing the Pfaffian graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is still open. In this paper, we try to investigate this question for the graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with a perfect matching. We first prove that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>) and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mn>5</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> are Pfaffian if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is an odd path or an even cycle, respectively. After showing that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> is not Pfaffian if G is nonbipartite, we obtain the characterization of the Pfaffian graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>×</mo>\\n \\n <msub>\\n <mi>C</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> in terms of the forbidden subgraphs of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"110 1\",\"pages\":\"33-40\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23247\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23247","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在多项式时间内得到了pfaffan二部图的识别,但对于pfaffan非二部图,这一事实仍然是未知的。对于路径pn和循环cn,笛卡尔积的普氏图G × p2n和Lu和Zhang于2014年对G × c2n进行了表征。最近,Li和Wang描述了Pfaffian图G × p2n + 1对于n≥2和普氏图G ×p3对于G是二部的。然而,描述普氏图G × c2n + 1的问题仍然开放。在本文中,我们试图研究具有完美匹配的图G的这个问题。我们首先证明gxc2n + 1(n≥3)和G × C当且仅当G是奇径或偶径时,5是普氏的。 在证明了G是非二部的情况下,G × c3不是普氏的,我们得到了用G的禁止子图表示的Pfaffian图G × c3的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Characterization on Pfaffian Graphs of Cartesian Product G × C 2 n + 1

The recognition of Pfaffian bipartite graphs in polynomial time has been obtained, but this fact is still unknown for Pfaffian nonbipartite graphs. For a path P n and a cycle C n , the Pfaffian graphs of Cartesian products G × P 2 n and G × C 2 n were characterized by Lu and Zhang in 2014. Recently, Li and Wang characterized the Pfaffian graph G × P 2 n + 1 for n 2 and the Pfaffian graph G × P 3 for G is bipartite. However, the question of characterizing the Pfaffian graph G × C 2 n + 1 is still open. In this paper, we try to investigate this question for the graph G with a perfect matching. We first prove that G × C 2 n + 1 ( n 3 ) and G × C 5 are Pfaffian if and only if G is an odd path or an even cycle, respectively. After showing that G × C 3 is not Pfaffian if G is nonbipartite, we obtain the characterization of the Pfaffian graph G × C 3 in terms of the forbidden subgraphs of G .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信