实现5.1 V固态锂离子电池的富无机阴极电解质界面固体聚合物电解质

Yue Hou, Yiqiao Wang, Zhiquan Wei, Zhuoxi Wu, Dedi Li, Qing Li, Shimei Li, Ze Chen, Yanbo Wang, Guojin Liang, Ke Wang, Chunyi Zhi
{"title":"实现5.1 V固态锂离子电池的富无机阴极电解质界面固体聚合物电解质","authors":"Yue Hou,&nbsp;Yiqiao Wang,&nbsp;Zhiquan Wei,&nbsp;Zhuoxi Wu,&nbsp;Dedi Li,&nbsp;Qing Li,&nbsp;Shimei Li,&nbsp;Ze Chen,&nbsp;Yanbo Wang,&nbsp;Guojin Liang,&nbsp;Ke Wang,&nbsp;Chunyi Zhi","doi":"10.1002/ange.202505147","DOIUrl":null,"url":null,"abstract":"<p>Manufacturing solid polymer electrolytes (SPEs) is an effective strategy for pursuing safe, energy-dense solid-state lithium-ion batteries (SSLIBs). However, the challenges lie in obtaining high-voltage SSLIBs due to the lack of an electrochemically stable SPE and the degradation of the high-voltage cathode beyond 5 V. Hence, we employed quantum chemical calculations to screen a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) (PVDF-TrFE-CFE, designated as PVTF) polymer with strong antioxidant capability to fabricate stable SPEs for high-voltage SSLIBs. Furthermore, a sacrificial additive (lithium difluorophosphate, LiDFP) was introduced in PVTF SPE to build a high-quality cathode electrolyte interphase (CEI) layer to stabilize the LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) cathode, which is denoted as PVTF1.0@LiDFP. The Li|PVTF1.0@LiDFP|LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) cell operating at 5.1 V sustains excellent cycling performance and remarkable rate performance, maintaining a long cycle life of over 200 cycles and achieving a high-rate capability of up to 2 C. Complementary characterization methods were utilized to dynamically observe the cathode structure and interphase evolution, revealing that the high antioxidant stability of the polymeric PVTF framework and the incorporation of LiDFP additive to form a high-quality CEI enriched with inorganic components realize the superior performance of Li|PVTF1.0@LiDFP|LNMO cell. Overall, the insights gained from our study provide a solid foundation for the development of high-voltage SSLIBs.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Solid Polymer Electrolyte with Inorganic-Enriched Cathode Electrolyte Interphases Enabling 5.1 V Solid-State Lithium-Ion Batteries\",\"authors\":\"Yue Hou,&nbsp;Yiqiao Wang,&nbsp;Zhiquan Wei,&nbsp;Zhuoxi Wu,&nbsp;Dedi Li,&nbsp;Qing Li,&nbsp;Shimei Li,&nbsp;Ze Chen,&nbsp;Yanbo Wang,&nbsp;Guojin Liang,&nbsp;Ke Wang,&nbsp;Chunyi Zhi\",\"doi\":\"10.1002/ange.202505147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Manufacturing solid polymer electrolytes (SPEs) is an effective strategy for pursuing safe, energy-dense solid-state lithium-ion batteries (SSLIBs). However, the challenges lie in obtaining high-voltage SSLIBs due to the lack of an electrochemically stable SPE and the degradation of the high-voltage cathode beyond 5 V. Hence, we employed quantum chemical calculations to screen a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) (PVDF-TrFE-CFE, designated as PVTF) polymer with strong antioxidant capability to fabricate stable SPEs for high-voltage SSLIBs. Furthermore, a sacrificial additive (lithium difluorophosphate, LiDFP) was introduced in PVTF SPE to build a high-quality cathode electrolyte interphase (CEI) layer to stabilize the LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) cathode, which is denoted as PVTF1.0@LiDFP. The Li|PVTF1.0@LiDFP|LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) cell operating at 5.1 V sustains excellent cycling performance and remarkable rate performance, maintaining a long cycle life of over 200 cycles and achieving a high-rate capability of up to 2 C. Complementary characterization methods were utilized to dynamically observe the cathode structure and interphase evolution, revealing that the high antioxidant stability of the polymeric PVTF framework and the incorporation of LiDFP additive to form a high-quality CEI enriched with inorganic components realize the superior performance of Li|PVTF1.0@LiDFP|LNMO cell. Overall, the insights gained from our study provide a solid foundation for the development of high-voltage SSLIBs.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202505147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202505147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制造固体聚合物电解质(spe)是追求安全、高能量的固态锂离子电池(sslib)的有效策略。然而,由于缺乏电化学稳定的SPE和超过5 V的高压阴极降解,在获得高压sslib方面存在挑战。因此,我们利用量子化学计算筛选了一种具有较强抗氧化能力的聚偏氟乙烯-共三氟乙烯-共氯三氟乙烯(PVDF-TrFE-CFE,简称PVTF)聚合物,用于制备高压sslib的稳定spe。此外,在PVTF SPE中引入牺牲添加剂(二氟磷酸锂,LiDFP)来构建高质量的阴极电解质界面(CEI)层,以稳定LiNi0.5Mn1.5O4 (LNMO)阴极,其表示为PVTF1.0@LiDFP。在5.1 V下工作的Li|PVTF1.0@LiDFP|LiNi0.5Mn1.5O4 (LNMO)电池保持了优异的循环性能和显著的倍率性能,保持了超过200次的长循环寿命,并实现了高达2 c的高倍率性能。揭示了聚合物PVTF框架的高抗氧化稳定性和LiDFP添加剂的加入形成了富含无机组分的高质量CEI,实现了Li|PVTF1.0@LiDFP|LNMO电池的优越性能。总的来说,从我们的研究中获得的见解为高压sslib的发展提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Solid Polymer Electrolyte with Inorganic-Enriched Cathode Electrolyte Interphases Enabling 5.1 V Solid-State Lithium-Ion Batteries

Manufacturing solid polymer electrolytes (SPEs) is an effective strategy for pursuing safe, energy-dense solid-state lithium-ion batteries (SSLIBs). However, the challenges lie in obtaining high-voltage SSLIBs due to the lack of an electrochemically stable SPE and the degradation of the high-voltage cathode beyond 5 V. Hence, we employed quantum chemical calculations to screen a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) (PVDF-TrFE-CFE, designated as PVTF) polymer with strong antioxidant capability to fabricate stable SPEs for high-voltage SSLIBs. Furthermore, a sacrificial additive (lithium difluorophosphate, LiDFP) was introduced in PVTF SPE to build a high-quality cathode electrolyte interphase (CEI) layer to stabilize the LiNi0.5Mn1.5O4 (LNMO) cathode, which is denoted as PVTF1.0@LiDFP. The Li|PVTF1.0@LiDFP|LiNi0.5Mn1.5O4 (LNMO) cell operating at 5.1 V sustains excellent cycling performance and remarkable rate performance, maintaining a long cycle life of over 200 cycles and achieving a high-rate capability of up to 2 C. Complementary characterization methods were utilized to dynamically observe the cathode structure and interphase evolution, revealing that the high antioxidant stability of the polymeric PVTF framework and the incorporation of LiDFP additive to form a high-quality CEI enriched with inorganic components realize the superior performance of Li|PVTF1.0@LiDFP|LNMO cell. Overall, the insights gained from our study provide a solid foundation for the development of high-voltage SSLIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信