{"title":"大脑体积的增大是否使早期人类面临灭绝的危险?","authors":"Jeffrey M. Stibel","doi":"10.1016/j.bandc.2025.106336","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing brain size is a hallmark of human evolution. While a larger brain offers evolutionary advantages driven by social and cognitive adaptations, it also imposes considerable energetic, metabolic, and thermoregulatory costs. As a result, brain size may have biological limits that impose survival pressures during periods of extreme environmental change. Here, temporal trends in absolute brain size across the genus <em>Homo</em> are analyzed, with a focus on a marked slowdown in growth beginning around 300,000 years ago<strong>.</strong> The results suggest that strong directional selection for brain expansion in early <em>Homo</em> was followed by a shift toward stabilizing selection in later populations. Comparisons across glacial and interglacial periods indicate that the physiological costs of large brains may have become especially disadvantageous during warming interglacial periods in the last 100,000 years, potentially increasing extinction risk. This evolutionary shift coincides with the emergence of cognitive and cultural innovations—such as symbolic tools and language—that may have enabled cognitive offloading, reducing selective pressure for continued encephalization. Together, these findings support the hypothesis that stabilizing selection, mediated in part by behavioral and technological adaptations, buffered later <em>Homo</em> populations against the ecological and physiological costs associated with large brains.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"188 ","pages":"Article 106336"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Did increasing brain size place early humans at risk of extinction?\",\"authors\":\"Jeffrey M. Stibel\",\"doi\":\"10.1016/j.bandc.2025.106336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increasing brain size is a hallmark of human evolution. While a larger brain offers evolutionary advantages driven by social and cognitive adaptations, it also imposes considerable energetic, metabolic, and thermoregulatory costs. As a result, brain size may have biological limits that impose survival pressures during periods of extreme environmental change. Here, temporal trends in absolute brain size across the genus <em>Homo</em> are analyzed, with a focus on a marked slowdown in growth beginning around 300,000 years ago<strong>.</strong> The results suggest that strong directional selection for brain expansion in early <em>Homo</em> was followed by a shift toward stabilizing selection in later populations. Comparisons across glacial and interglacial periods indicate that the physiological costs of large brains may have become especially disadvantageous during warming interglacial periods in the last 100,000 years, potentially increasing extinction risk. This evolutionary shift coincides with the emergence of cognitive and cultural innovations—such as symbolic tools and language—that may have enabled cognitive offloading, reducing selective pressure for continued encephalization. Together, these findings support the hypothesis that stabilizing selection, mediated in part by behavioral and technological adaptations, buffered later <em>Homo</em> populations against the ecological and physiological costs associated with large brains.</div></div>\",\"PeriodicalId\":55331,\"journal\":{\"name\":\"Brain and Cognition\",\"volume\":\"188 \",\"pages\":\"Article 106336\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278262625000764\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278262625000764","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Did increasing brain size place early humans at risk of extinction?
Increasing brain size is a hallmark of human evolution. While a larger brain offers evolutionary advantages driven by social and cognitive adaptations, it also imposes considerable energetic, metabolic, and thermoregulatory costs. As a result, brain size may have biological limits that impose survival pressures during periods of extreme environmental change. Here, temporal trends in absolute brain size across the genus Homo are analyzed, with a focus on a marked slowdown in growth beginning around 300,000 years ago. The results suggest that strong directional selection for brain expansion in early Homo was followed by a shift toward stabilizing selection in later populations. Comparisons across glacial and interglacial periods indicate that the physiological costs of large brains may have become especially disadvantageous during warming interglacial periods in the last 100,000 years, potentially increasing extinction risk. This evolutionary shift coincides with the emergence of cognitive and cultural innovations—such as symbolic tools and language—that may have enabled cognitive offloading, reducing selective pressure for continued encephalization. Together, these findings support the hypothesis that stabilizing selection, mediated in part by behavioral and technological adaptations, buffered later Homo populations against the ecological and physiological costs associated with large brains.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.