NiO@CoxSy纳米结构电催化剂设计的高效碱性电解水

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Hong-Sheng Chu , Dong-Mei Ma , Xingming Zhao , Jun Xiang , Rongda Zhao , Fufa Wu , Tianlin Wang
{"title":"NiO@CoxSy纳米结构电催化剂设计的高效碱性电解水","authors":"Hong-Sheng Chu ,&nbsp;Dong-Mei Ma ,&nbsp;Xingming Zhao ,&nbsp;Jun Xiang ,&nbsp;Rongda Zhao ,&nbsp;Fufa Wu ,&nbsp;Tianlin Wang","doi":"10.1016/j.susmat.2025.e01527","DOIUrl":null,"url":null,"abstract":"<div><div>Rational design of composite-structured electrocatalysts presents a promising strategy for enhancing water electrolysis efficiency. In this work, two NiO-based heterostructured electrocatalysts were rationally constructed by coupling NiO with cobalt sulfides possessing different crystalline phases, synthesized via two distinct methods. Despite sharing the same NiO substrate, the two resulting heterostructures exhibit significantly different electrocatalytic performances: NiO@Co<sub>9</sub>S<sub>8</sub> material demonstrates superior hydrogen evolution reaction (HER) activity, while the other(NiO@CoS<sub>2</sub>) exhibits enhanced oxygen evolution reaction (OER) activity. This finding reveals that the electrocatalytic behavior can be finely tuned by modulating the crystalline structure of the cobalt sulfide component, while keeping the NiO support constant. Notably, the NiO@Co<sub>9</sub>S<sub>8</sub> catalyst exhibits excellent HER performance, requiring an overpotential of only 158.8 mV at a current density of 50 mA/cm<sup>2</sup>, the corresponding Tafel slope is 142.72 mV/dec. Conversely, the NiO@CoS<sub>2</sub> electrocatalyst exhibits even stronger OER activity, achieving an overpotential of 340.2 mV at 50 mA/cm<sup>2</sup> with a Tafel slope of 178.81 mV/dec. Extended stability tests under high current density conditions over 50 h confirmed the exceptional durability of both electrocatalysts in overall water splitting applications. These results underscore NiO@CoS<sub>2</sub> and NiO@Co<sub>9</sub>S<sub>8</sub> potential as novel high-efficiency bifunctional catalysts for advanced water electrolysis systems.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01527"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NiO@CoxSy nanostructures electrocatalysts designed for efficient alkaline water electrolysis\",\"authors\":\"Hong-Sheng Chu ,&nbsp;Dong-Mei Ma ,&nbsp;Xingming Zhao ,&nbsp;Jun Xiang ,&nbsp;Rongda Zhao ,&nbsp;Fufa Wu ,&nbsp;Tianlin Wang\",\"doi\":\"10.1016/j.susmat.2025.e01527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rational design of composite-structured electrocatalysts presents a promising strategy for enhancing water electrolysis efficiency. In this work, two NiO-based heterostructured electrocatalysts were rationally constructed by coupling NiO with cobalt sulfides possessing different crystalline phases, synthesized via two distinct methods. Despite sharing the same NiO substrate, the two resulting heterostructures exhibit significantly different electrocatalytic performances: NiO@Co<sub>9</sub>S<sub>8</sub> material demonstrates superior hydrogen evolution reaction (HER) activity, while the other(NiO@CoS<sub>2</sub>) exhibits enhanced oxygen evolution reaction (OER) activity. This finding reveals that the electrocatalytic behavior can be finely tuned by modulating the crystalline structure of the cobalt sulfide component, while keeping the NiO support constant. Notably, the NiO@Co<sub>9</sub>S<sub>8</sub> catalyst exhibits excellent HER performance, requiring an overpotential of only 158.8 mV at a current density of 50 mA/cm<sup>2</sup>, the corresponding Tafel slope is 142.72 mV/dec. Conversely, the NiO@CoS<sub>2</sub> electrocatalyst exhibits even stronger OER activity, achieving an overpotential of 340.2 mV at 50 mA/cm<sup>2</sup> with a Tafel slope of 178.81 mV/dec. Extended stability tests under high current density conditions over 50 h confirmed the exceptional durability of both electrocatalysts in overall water splitting applications. These results underscore NiO@CoS<sub>2</sub> and NiO@Co<sub>9</sub>S<sub>8</sub> potential as novel high-efficiency bifunctional catalysts for advanced water electrolysis systems.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01527\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725002957\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725002957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

合理设计复合结构电催化剂是提高水电解效率的有效途径。本文通过两种不同的方法,将NiO与具有不同晶相的硫化钴偶联,合理构建了两种NiO基异质结构电催化剂。尽管共享相同的NiO底物,但两种异质结构表现出明显不同的电催化性能:NiO@Co9S8材料具有优越的析氢反应(HER)活性,而另一种材料(NiO@CoS2)具有增强的析氧反应(OER)活性。这一发现表明,在保持NiO载体不变的情况下,可以通过调节硫化钴组分的晶体结构来微调电催化行为。值得注意的是,NiO@Co9S8催化剂表现出优异的HER性能,在电流密度为50 mA/cm2时,过电位仅为158.8 mV,相应的Tafel斜率为142.72 mV/dec。相反,NiO@CoS2电催化剂表现出更强的OER活性,在50 mA/cm2时达到340.2 mV的过电位,Tafel斜率为178.81 mV/dec。在高电流密度条件下超过50小时的稳定性测试证实了这两种电催化剂在整体水分解应用中的卓越耐久性。这些结果强调NiO@CoS2和NiO@Co9S8作为新型高效双功能催化剂在先进水电解系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NiO@CoxSy nanostructures electrocatalysts designed for efficient alkaline water electrolysis

NiO@CoxSy nanostructures electrocatalysts designed for efficient alkaline water electrolysis
Rational design of composite-structured electrocatalysts presents a promising strategy for enhancing water electrolysis efficiency. In this work, two NiO-based heterostructured electrocatalysts were rationally constructed by coupling NiO with cobalt sulfides possessing different crystalline phases, synthesized via two distinct methods. Despite sharing the same NiO substrate, the two resulting heterostructures exhibit significantly different electrocatalytic performances: NiO@Co9S8 material demonstrates superior hydrogen evolution reaction (HER) activity, while the other(NiO@CoS2) exhibits enhanced oxygen evolution reaction (OER) activity. This finding reveals that the electrocatalytic behavior can be finely tuned by modulating the crystalline structure of the cobalt sulfide component, while keeping the NiO support constant. Notably, the NiO@Co9S8 catalyst exhibits excellent HER performance, requiring an overpotential of only 158.8 mV at a current density of 50 mA/cm2, the corresponding Tafel slope is 142.72 mV/dec. Conversely, the NiO@CoS2 electrocatalyst exhibits even stronger OER activity, achieving an overpotential of 340.2 mV at 50 mA/cm2 with a Tafel slope of 178.81 mV/dec. Extended stability tests under high current density conditions over 50 h confirmed the exceptional durability of both electrocatalysts in overall water splitting applications. These results underscore NiO@CoS2 and NiO@Co9S8 potential as novel high-efficiency bifunctional catalysts for advanced water electrolysis systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信