原子分散Fe/Zn在硫修饰氮掺杂碳中的协同作用提高氧还原活性

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ting Wang, Zongge Li, Wenjun Kang, Rui Li, Konggang Qu, Lei Wang, Fanpeng Meng and Haibo Li
{"title":"原子分散Fe/Zn在硫修饰氮掺杂碳中的协同作用提高氧还原活性","authors":"Ting Wang, Zongge Li, Wenjun Kang, Rui Li, Konggang Qu, Lei Wang, Fanpeng Meng and Haibo Li","doi":"10.1039/D5TA03390J","DOIUrl":null,"url":null,"abstract":"<p >Single-atom catalysts (SACs) stabilized by multiple nitrogen-coordination architectures exhibit superior catalytic activity in pivotal electrocatalytic reactions, owing to their highly unsaturated coordination environments and robust metal-substrate interactions. Herein, atomically dispersed Fe and Zn species stabilized in specific Fe-N<small><sub>4</sub></small> and Zn-N<small><sub>4</sub></small> configurations without dimer formation were synthesized, confirmed by X-ray absorption near-edge structure analysis. Moderate S-doping strategically modulates the electronic structure of metal active sites, which advantageously regulates the adsorption/desorption characteristics of the atomic center towards the reaction intermediate. Electrochemical evaluations reveal remarkable oxygen reduction reaction (ORR) enhancement in the S-doped Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-NC catalyst (denoted as the Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-SNC-X series). The optimal catalyst Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-SNC-II demonstrates an exceptional onset potential of 0.999 V and half-wave potential of 0.871 V in 0.1 M KOH, surpassing the performance of Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-NC (S free). When assembled in zinc–air batteries (ZABs), the Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-SNC-II-ZAB outperforms the Pt/C-ZAB in both power density and cycling stability. This work provides fundamental insights into catalytic enhancement mechanisms through precisely tailoring the local coordination environment of M<small><sub>1</sub></small>-N<small><sub>4</sub></small>/M<small><sub>2</sub></small>-N<small><sub>4</sub></small> moieties, establishing a paradigm for designing high-performance SACs by synergistic heteroatom engineering.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 31","pages":" 25423-25434"},"PeriodicalIF":9.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomically dispersed Fe/Zn synergy in sulfur-modified nitrogen-doped carbon for boosting oxygen reduction activity†\",\"authors\":\"Ting Wang, Zongge Li, Wenjun Kang, Rui Li, Konggang Qu, Lei Wang, Fanpeng Meng and Haibo Li\",\"doi\":\"10.1039/D5TA03390J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Single-atom catalysts (SACs) stabilized by multiple nitrogen-coordination architectures exhibit superior catalytic activity in pivotal electrocatalytic reactions, owing to their highly unsaturated coordination environments and robust metal-substrate interactions. Herein, atomically dispersed Fe and Zn species stabilized in specific Fe-N<small><sub>4</sub></small> and Zn-N<small><sub>4</sub></small> configurations without dimer formation were synthesized, confirmed by X-ray absorption near-edge structure analysis. Moderate S-doping strategically modulates the electronic structure of metal active sites, which advantageously regulates the adsorption/desorption characteristics of the atomic center towards the reaction intermediate. Electrochemical evaluations reveal remarkable oxygen reduction reaction (ORR) enhancement in the S-doped Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-NC catalyst (denoted as the Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-SNC-X series). The optimal catalyst Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-SNC-II demonstrates an exceptional onset potential of 0.999 V and half-wave potential of 0.871 V in 0.1 M KOH, surpassing the performance of Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-NC (S free). When assembled in zinc–air batteries (ZABs), the Fe<small><sub>1</sub></small>Zn<small><sub>1</sub></small>-SNC-II-ZAB outperforms the Pt/C-ZAB in both power density and cycling stability. This work provides fundamental insights into catalytic enhancement mechanisms through precisely tailoring the local coordination environment of M<small><sub>1</sub></small>-N<small><sub>4</sub></small>/M<small><sub>2</sub></small>-N<small><sub>4</sub></small> moieties, establishing a paradigm for designing high-performance SACs by synergistic heteroatom engineering.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 31\",\"pages\":\" 25423-25434\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03390j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03390j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多氮配位结构稳定的单原子催化剂在关键电催化反应中表现出优异的催化活性,这是因为它们具有高度不饱和的配位环境和强大的金属-底物相互作用。本文合成了原子分散的Fe和Zn,稳定在特定的Fe- n4和Zn- n4构型中,没有形成二聚体,并通过x射线吸收近边结构分析得到了证实。适度的s掺杂战略性地调节了金属活性位点的电子结构,有利于调节原子中心对反应中间体的吸附/解吸特性。电化学评价表明,s掺杂Fe1Zn1-NC催化剂(记为Fe1Zn1-SNC-X系列)的氧还原反应(ORR)显著增强。最佳催化剂Fe1Zn1-SNC-II在0.1 M KOH条件下的起始电位为0.999 V,半波电位为0.871 V,优于Fe1Zn1-NC (S free)。当在锌空气电池(ZABs)中组装时,Fe1Zn1-SNC-II-ZAB在功率密度和循环稳定性方面优于Pt/C-ZAB。本研究通过精确调整M1-N4/M2-N4基团的局部配位环境,为催化增强机制提供了基础见解,为利用协同杂原子工程设计高性能SACs建立了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomically dispersed Fe/Zn synergy in sulfur-modified nitrogen-doped carbon for boosting oxygen reduction activity†

Atomically dispersed Fe/Zn synergy in sulfur-modified nitrogen-doped carbon for boosting oxygen reduction activity†

Atomically dispersed Fe/Zn synergy in sulfur-modified nitrogen-doped carbon for boosting oxygen reduction activity†

Single-atom catalysts (SACs) stabilized by multiple nitrogen-coordination architectures exhibit superior catalytic activity in pivotal electrocatalytic reactions, owing to their highly unsaturated coordination environments and robust metal-substrate interactions. Herein, atomically dispersed Fe and Zn species stabilized in specific Fe-N4 and Zn-N4 configurations without dimer formation were synthesized, confirmed by X-ray absorption near-edge structure analysis. Moderate S-doping strategically modulates the electronic structure of metal active sites, which advantageously regulates the adsorption/desorption characteristics of the atomic center towards the reaction intermediate. Electrochemical evaluations reveal remarkable oxygen reduction reaction (ORR) enhancement in the S-doped Fe1Zn1-NC catalyst (denoted as the Fe1Zn1-SNC-X series). The optimal catalyst Fe1Zn1-SNC-II demonstrates an exceptional onset potential of 0.999 V and half-wave potential of 0.871 V in 0.1 M KOH, surpassing the performance of Fe1Zn1-NC (S free). When assembled in zinc–air batteries (ZABs), the Fe1Zn1-SNC-II-ZAB outperforms the Pt/C-ZAB in both power density and cycling stability. This work provides fundamental insights into catalytic enhancement mechanisms through precisely tailoring the local coordination environment of M1-N4/M2-N4 moieties, establishing a paradigm for designing high-performance SACs by synergistic heteroatom engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信