{"title":"分形维数在偏高岭土聚合物干燥收缩预测中的应用","authors":"YiWei Yang, Dunwen Huang, ZengLin Long, Hui Peng","doi":"10.1016/j.jobe.2025.113424","DOIUrl":null,"url":null,"abstract":"This study develops a fractal dimension-based model for predicting drying shrinkage in metakaolin-based geopolymers (MKBGs) through mercury intrusion porosimetry and thermodynamic analysis. The micropore surface fractal dimension <mml:math altimg=\"si1.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> (pore diameter ≤30 nm, dimension range: 2.27–2.97) demonstrates significant correlations with pore structure parameters: strong negative relationships with porosity (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8923), sub-30-nm pore volume (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8293), and most probable pore size (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.7120), alongside a moderate positive correlation with specific surface area (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.5892). Ds2 further serves as a robust indicator of macroscopic properties, exhibiting a linear correlation with compressive strength (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.9392) and effectively characterizing pore connectivity through chloride migration coefficients (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.7388) and internal humidity decay kinetics (daily <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> > 0.9 at 50 % RH). By establishing a <mml:math altimg=\"si1.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-dependent humidity evolution model (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> > 0.95), we achieve drying shrinkage prediction with minimal deviations (e.g., 481 <ce:italic>με</ce:italic> for 40 % activator concentration). This approach provides a practical framework for geopolymer durability optimization while circumventing complex humidity measurements.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of fractal dimensions in predicting the drying shrinkage of metakaolin-based geopolymers\",\"authors\":\"YiWei Yang, Dunwen Huang, ZengLin Long, Hui Peng\",\"doi\":\"10.1016/j.jobe.2025.113424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops a fractal dimension-based model for predicting drying shrinkage in metakaolin-based geopolymers (MKBGs) through mercury intrusion porosimetry and thermodynamic analysis. The micropore surface fractal dimension <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> (pore diameter ≤30 nm, dimension range: 2.27–2.97) demonstrates significant correlations with pore structure parameters: strong negative relationships with porosity (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8923), sub-30-nm pore volume (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8293), and most probable pore size (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.7120), alongside a moderate positive correlation with specific surface area (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.5892). Ds2 further serves as a robust indicator of macroscopic properties, exhibiting a linear correlation with compressive strength (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.9392) and effectively characterizing pore connectivity through chloride migration coefficients (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.7388) and internal humidity decay kinetics (daily <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> > 0.9 at 50 % RH). By establishing a <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-dependent humidity evolution model (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> > 0.95), we achieve drying shrinkage prediction with minimal deviations (e.g., 481 <ce:italic>με</ce:italic> for 40 % activator concentration). This approach provides a practical framework for geopolymer durability optimization while circumventing complex humidity measurements.\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jobe.2025.113424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Application of fractal dimensions in predicting the drying shrinkage of metakaolin-based geopolymers
This study develops a fractal dimension-based model for predicting drying shrinkage in metakaolin-based geopolymers (MKBGs) through mercury intrusion porosimetry and thermodynamic analysis. The micropore surface fractal dimension Ds2 (pore diameter ≤30 nm, dimension range: 2.27–2.97) demonstrates significant correlations with pore structure parameters: strong negative relationships with porosity (R2 = −0.8923), sub-30-nm pore volume (R2 = −0.8293), and most probable pore size (R2 = −0.7120), alongside a moderate positive correlation with specific surface area (R2 = 0.5892). Ds2 further serves as a robust indicator of macroscopic properties, exhibiting a linear correlation with compressive strength (R2 = 0.9392) and effectively characterizing pore connectivity through chloride migration coefficients (R2 = 0.7388) and internal humidity decay kinetics (daily R2 > 0.9 at 50 % RH). By establishing a Ds2-dependent humidity evolution model (R2 > 0.95), we achieve drying shrinkage prediction with minimal deviations (e.g., 481 με for 40 % activator concentration). This approach provides a practical framework for geopolymer durability optimization while circumventing complex humidity measurements.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.