分形维数在偏高岭土聚合物干燥收缩预测中的应用

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
YiWei Yang, Dunwen Huang, ZengLin Long, Hui Peng
{"title":"分形维数在偏高岭土聚合物干燥收缩预测中的应用","authors":"YiWei Yang, Dunwen Huang, ZengLin Long, Hui Peng","doi":"10.1016/j.jobe.2025.113424","DOIUrl":null,"url":null,"abstract":"This study develops a fractal dimension-based model for predicting drying shrinkage in metakaolin-based geopolymers (MKBGs) through mercury intrusion porosimetry and thermodynamic analysis. The micropore surface fractal dimension <mml:math altimg=\"si1.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> (pore diameter ≤30 nm, dimension range: 2.27–2.97) demonstrates significant correlations with pore structure parameters: strong negative relationships with porosity (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8923), sub-30-nm pore volume (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8293), and most probable pore size (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.7120), alongside a moderate positive correlation with specific surface area (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.5892). Ds2 further serves as a robust indicator of macroscopic properties, exhibiting a linear correlation with compressive strength (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.9392) and effectively characterizing pore connectivity through chloride migration coefficients (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.7388) and internal humidity decay kinetics (daily <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> &gt; 0.9 at 50 % RH). By establishing a <mml:math altimg=\"si1.svg\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-dependent humidity evolution model (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> &gt; 0.95), we achieve drying shrinkage prediction with minimal deviations (e.g., 481 <ce:italic>με</ce:italic> for 40 % activator concentration). This approach provides a practical framework for geopolymer durability optimization while circumventing complex humidity measurements.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of fractal dimensions in predicting the drying shrinkage of metakaolin-based geopolymers\",\"authors\":\"YiWei Yang, Dunwen Huang, ZengLin Long, Hui Peng\",\"doi\":\"10.1016/j.jobe.2025.113424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops a fractal dimension-based model for predicting drying shrinkage in metakaolin-based geopolymers (MKBGs) through mercury intrusion porosimetry and thermodynamic analysis. The micropore surface fractal dimension <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> (pore diameter ≤30 nm, dimension range: 2.27–2.97) demonstrates significant correlations with pore structure parameters: strong negative relationships with porosity (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8923), sub-30-nm pore volume (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.8293), and most probable pore size (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = −0.7120), alongside a moderate positive correlation with specific surface area (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.5892). Ds2 further serves as a robust indicator of macroscopic properties, exhibiting a linear correlation with compressive strength (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.9392) and effectively characterizing pore connectivity through chloride migration coefficients (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> = 0.7388) and internal humidity decay kinetics (daily <mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> &gt; 0.9 at 50 % RH). By establishing a <mml:math altimg=\\\"si1.svg\\\"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mrow><mml:mi>s</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>-dependent humidity evolution model (<mml:math altimg=\\\"si2.svg\\\"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> &gt; 0.95), we achieve drying shrinkage prediction with minimal deviations (e.g., 481 <ce:italic>με</ce:italic> for 40 % activator concentration). This approach provides a practical framework for geopolymer durability optimization while circumventing complex humidity measurements.\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jobe.2025.113424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2025.113424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过压汞孔隙度法和热力学分析,建立了一种基于分形维数的偏高岭土聚合物(MKBGs)干燥收缩预测模型。微孔表面分形维数Ds2(孔径≤30 nm,维数范围为2.27 ~ 2.97)与孔隙结构参数呈显著相关,与孔隙度(R2 = - 0.8923)、亚30 nm孔体积(R2 = - 0.8293)、最可能孔径(R2 = - 0.7120)呈显著负相关,与比表面积(R2 = 0.5892)呈中等正相关。Ds2还可以作为宏观性能的可靠指标,与抗压强度呈线性相关(R2 = 0.9392),并通过氯离子迁移系数(R2 = 0.7388)和内部湿度衰减动力学(每日R2 >;在50% RH时为0.9)。通过建立依赖于ds2的湿度演化模型(R2 >;0.95),我们实现了最小偏差的干燥收缩预测(例如,当活化剂浓度为40%时,预测误差为481 με)。这种方法为地聚合物耐久性优化提供了一个实用的框架,同时避免了复杂的湿度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of fractal dimensions in predicting the drying shrinkage of metakaolin-based geopolymers
This study develops a fractal dimension-based model for predicting drying shrinkage in metakaolin-based geopolymers (MKBGs) through mercury intrusion porosimetry and thermodynamic analysis. The micropore surface fractal dimension Ds2 (pore diameter ≤30 nm, dimension range: 2.27–2.97) demonstrates significant correlations with pore structure parameters: strong negative relationships with porosity (R2 = −0.8923), sub-30-nm pore volume (R2 = −0.8293), and most probable pore size (R2 = −0.7120), alongside a moderate positive correlation with specific surface area (R2 = 0.5892). Ds2 further serves as a robust indicator of macroscopic properties, exhibiting a linear correlation with compressive strength (R2 = 0.9392) and effectively characterizing pore connectivity through chloride migration coefficients (R2 = 0.7388) and internal humidity decay kinetics (daily R2 > 0.9 at 50 % RH). By establishing a Ds2-dependent humidity evolution model (R2 > 0.95), we achieve drying shrinkage prediction with minimal deviations (e.g., 481 με for 40 % activator concentration). This approach provides a practical framework for geopolymer durability optimization while circumventing complex humidity measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信