Shuting Ji , Liang Lei , Sergio Andres Galindo Torres , Ling Li
{"title":"羟基化二氧化硅表面对分子尺度水冻结的影响及其对非饱和冻土的影响","authors":"Shuting Ji , Liang Lei , Sergio Andres Galindo Torres , Ling Li","doi":"10.1016/j.jhydrol.2025.133901","DOIUrl":null,"url":null,"abstract":"<div><div>In unsaturated frozen soil, a multi-phase complex system, the influence of initial water content on the unfrozen water content remains unclear. Understanding this influence is essential for determination of the soil freezing characteristic curve (SFCC), a constitutive relation in macroscale numerical models for permafrost. This unresolved issue stems from a lack of understanding of the underlying mechanisms, including microscale processes and interfacial effects. Here, we employed molecular dynamics (MD) simulations to investigate the water freezing-thawing process based on hydroxylated silica surface, resembling an unfrozen soil system. The results revealed that the interface between water and silica forms an ordered structure via hydrogen bonding, indicating an attraction of water molecules to the silica surface. The presence of the silica surface depresses the water triple point by 5.0 K. As the water content increases, along with the pore size, the triple point decreases further by nearly 10.0 K for a 10 nm increase in pore size. Through a simple yet physically based model, we identified that a smaller distance from water to silanol groups, corresponding to systems with lower initial water content, leads to a deeper potential well, which subsequently requires more energy for phase change and higher triple point. The deeper potential well also restricts the movement of water molecules, resulting in slower dynamic processes within smaller pores. This implies that the initial water content is important in obtaining the SFCC, since the initial water content can affect the water triple point.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"662 ","pages":"Article 133901"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of hydroxylated silica surface on molecular-scale water freezing with implications for unsaturated permafrost\",\"authors\":\"Shuting Ji , Liang Lei , Sergio Andres Galindo Torres , Ling Li\",\"doi\":\"10.1016/j.jhydrol.2025.133901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In unsaturated frozen soil, a multi-phase complex system, the influence of initial water content on the unfrozen water content remains unclear. Understanding this influence is essential for determination of the soil freezing characteristic curve (SFCC), a constitutive relation in macroscale numerical models for permafrost. This unresolved issue stems from a lack of understanding of the underlying mechanisms, including microscale processes and interfacial effects. Here, we employed molecular dynamics (MD) simulations to investigate the water freezing-thawing process based on hydroxylated silica surface, resembling an unfrozen soil system. The results revealed that the interface between water and silica forms an ordered structure via hydrogen bonding, indicating an attraction of water molecules to the silica surface. The presence of the silica surface depresses the water triple point by 5.0 K. As the water content increases, along with the pore size, the triple point decreases further by nearly 10.0 K for a 10 nm increase in pore size. Through a simple yet physically based model, we identified that a smaller distance from water to silanol groups, corresponding to systems with lower initial water content, leads to a deeper potential well, which subsequently requires more energy for phase change and higher triple point. The deeper potential well also restricts the movement of water molecules, resulting in slower dynamic processes within smaller pores. This implies that the initial water content is important in obtaining the SFCC, since the initial water content can affect the water triple point.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"662 \",\"pages\":\"Article 133901\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425012399\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425012399","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effects of hydroxylated silica surface on molecular-scale water freezing with implications for unsaturated permafrost
In unsaturated frozen soil, a multi-phase complex system, the influence of initial water content on the unfrozen water content remains unclear. Understanding this influence is essential for determination of the soil freezing characteristic curve (SFCC), a constitutive relation in macroscale numerical models for permafrost. This unresolved issue stems from a lack of understanding of the underlying mechanisms, including microscale processes and interfacial effects. Here, we employed molecular dynamics (MD) simulations to investigate the water freezing-thawing process based on hydroxylated silica surface, resembling an unfrozen soil system. The results revealed that the interface between water and silica forms an ordered structure via hydrogen bonding, indicating an attraction of water molecules to the silica surface. The presence of the silica surface depresses the water triple point by 5.0 K. As the water content increases, along with the pore size, the triple point decreases further by nearly 10.0 K for a 10 nm increase in pore size. Through a simple yet physically based model, we identified that a smaller distance from water to silanol groups, corresponding to systems with lower initial water content, leads to a deeper potential well, which subsequently requires more energy for phase change and higher triple point. The deeper potential well also restricts the movement of water molecules, resulting in slower dynamic processes within smaller pores. This implies that the initial water content is important in obtaining the SFCC, since the initial water content can affect the water triple point.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.