Travis Leadbetter, Prashant K. Purohit, Celia Reina
{"title":"弹性介质前传播非保守相场模型的统计力学推导与实现","authors":"Travis Leadbetter, Prashant K. Purohit, Celia Reina","doi":"10.1016/j.jmps.2025.106240","DOIUrl":null,"url":null,"abstract":"Over the past several decades, phase field modeling has been established as a standard simulation technique for mesoscopic science, allowing for seamless boundary tracking of moving interfaces and relatively easy coupling to other physical phenomena. However, despite its widespread success, phase field modeling remains largely driven by phenomenological justifications except in a handful of instances. In this work, we leverage a recently developed statistical mechanics framework for non-equilibrium phenomena, called Stochastic Thermodynamics with Internal Variables (STIV), to provide the first derivation of a non-conservative phase field model for tracking front propagation in a one dimensional elastic medium without appeal to phenomenology or fitting to experiments or simulation data. In the resulting model, the variables obey a gradient flow with respect to a non-equilibrium free energy, although notably, the dynamics of the strain and phase variables are coupled, and while the free energy functional is non-local in the phase field variable <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi>Φ</mml:mi></mml:math>, such non-locality deviates from the traditional <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mo>∇</mml:mo><mml:mi>Φ</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> form. Moreover, in the systems analyzed here, the model accurately captures stress induced nucleation of transition fronts without the need to incorporate additional physics. We find that the STIV phase field model compares favorably to Langevin simulations of the microscopic system and we provide two numerical implementations enabling one to simulate arbitrary interatomic potentials.","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"23 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A statistical mechanics derivation and implementation of non-conservative phase field models for front propagation in elastic media\",\"authors\":\"Travis Leadbetter, Prashant K. Purohit, Celia Reina\",\"doi\":\"10.1016/j.jmps.2025.106240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past several decades, phase field modeling has been established as a standard simulation technique for mesoscopic science, allowing for seamless boundary tracking of moving interfaces and relatively easy coupling to other physical phenomena. However, despite its widespread success, phase field modeling remains largely driven by phenomenological justifications except in a handful of instances. In this work, we leverage a recently developed statistical mechanics framework for non-equilibrium phenomena, called Stochastic Thermodynamics with Internal Variables (STIV), to provide the first derivation of a non-conservative phase field model for tracking front propagation in a one dimensional elastic medium without appeal to phenomenology or fitting to experiments or simulation data. In the resulting model, the variables obey a gradient flow with respect to a non-equilibrium free energy, although notably, the dynamics of the strain and phase variables are coupled, and while the free energy functional is non-local in the phase field variable <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mi>Φ</mml:mi></mml:math>, such non-locality deviates from the traditional <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mo>∇</mml:mo><mml:mi>Φ</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> form. Moreover, in the systems analyzed here, the model accurately captures stress induced nucleation of transition fronts without the need to incorporate additional physics. We find that the STIV phase field model compares favorably to Langevin simulations of the microscopic system and we provide two numerical implementations enabling one to simulate arbitrary interatomic potentials.\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmps.2025.106240\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jmps.2025.106240","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A statistical mechanics derivation and implementation of non-conservative phase field models for front propagation in elastic media
Over the past several decades, phase field modeling has been established as a standard simulation technique for mesoscopic science, allowing for seamless boundary tracking of moving interfaces and relatively easy coupling to other physical phenomena. However, despite its widespread success, phase field modeling remains largely driven by phenomenological justifications except in a handful of instances. In this work, we leverage a recently developed statistical mechanics framework for non-equilibrium phenomena, called Stochastic Thermodynamics with Internal Variables (STIV), to provide the first derivation of a non-conservative phase field model for tracking front propagation in a one dimensional elastic medium without appeal to phenomenology or fitting to experiments or simulation data. In the resulting model, the variables obey a gradient flow with respect to a non-equilibrium free energy, although notably, the dynamics of the strain and phase variables are coupled, and while the free energy functional is non-local in the phase field variable Φ, such non-locality deviates from the traditional |∇Φ|2 form. Moreover, in the systems analyzed here, the model accurately captures stress induced nucleation of transition fronts without the need to incorporate additional physics. We find that the STIV phase field model compares favorably to Langevin simulations of the microscopic system and we provide two numerical implementations enabling one to simulate arbitrary interatomic potentials.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.