从锂的角度看废锂离子电池的回收利用

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Junlan Fang, Guangying Wan, Mengting Zheng, Tiefeng Liu, Jun Lu
{"title":"从锂的角度看废锂离子电池的回收利用","authors":"Junlan Fang, Guangying Wan, Mengting Zheng, Tiefeng Liu, Jun Lu","doi":"10.1002/aenm.202501318","DOIUrl":null,"url":null,"abstract":"The growing demand for lithium‐ion batteries (LIBs) has intensified the need for sustainable lithium sources, as natural reserves struggle to meet global requirements. Spent LIBs, rich in lithium, present a promising alternative for lithium extraction, providing both environmental and economic benefits. This review underscores the significance of lithium recycling and systematically examines recent advances in extraction processes, focusing on the extraction of lithium salts from spent cathode and anode materials, while addressing key challenges such as impurity control. Further, innovative lithium reintegration pathways, particularly direct regeneration methods utilizing carbonate salts are reviewed. By broadening the scope of extracted lithium compounds beyond conventional carbonates, how expanding extraction media can enhance the feasibility of a closed‐loop lithium supply is demonstrated. The proposed “lithium extraction‐reintegration” framework not only improves resource circularity but also establishes a foundation for securing lithium in the battery economy. This review aims to inspire future research and industrial efforts toward closing the lithium supply loop, bridging critical gaps in sustainable battery material recovery.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycling of Spent Lithium‐Ion Batteries in View of Lithium\",\"authors\":\"Junlan Fang, Guangying Wan, Mengting Zheng, Tiefeng Liu, Jun Lu\",\"doi\":\"10.1002/aenm.202501318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for lithium‐ion batteries (LIBs) has intensified the need for sustainable lithium sources, as natural reserves struggle to meet global requirements. Spent LIBs, rich in lithium, present a promising alternative for lithium extraction, providing both environmental and economic benefits. This review underscores the significance of lithium recycling and systematically examines recent advances in extraction processes, focusing on the extraction of lithium salts from spent cathode and anode materials, while addressing key challenges such as impurity control. Further, innovative lithium reintegration pathways, particularly direct regeneration methods utilizing carbonate salts are reviewed. By broadening the scope of extracted lithium compounds beyond conventional carbonates, how expanding extraction media can enhance the feasibility of a closed‐loop lithium supply is demonstrated. The proposed “lithium extraction‐reintegration” framework not only improves resource circularity but also establishes a foundation for securing lithium in the battery economy. This review aims to inspire future research and industrial efforts toward closing the lithium supply loop, bridging critical gaps in sustainable battery material recovery.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202501318\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501318","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(lib)的需求不断增长,加剧了对可持续锂资源的需求,因为自然储量难以满足全球需求。废锂是一种很有前途的锂提取方法,具有环境效益和经济效益。这篇综述强调了锂回收的重要性,并系统地研究了提取工艺的最新进展,重点是从废阴极和阳极材料中提取锂盐,同时解决了杂质控制等关键挑战。此外,还回顾了创新的锂重新整合途径,特别是利用碳酸盐的直接再生方法。通过扩大提取锂化合物的范围,超越了传统的碳酸盐,如何扩大提取介质可以提高闭环锂供应的可行性。提出的“锂提取-重新整合”框架不仅提高了资源循环,而且为电池经济中的锂安全奠定了基础。这篇综述旨在启发未来的研究和工业努力,以关闭锂供应循环,弥合可持续电池材料回收的关键差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recycling of Spent Lithium‐Ion Batteries in View of Lithium
The growing demand for lithium‐ion batteries (LIBs) has intensified the need for sustainable lithium sources, as natural reserves struggle to meet global requirements. Spent LIBs, rich in lithium, present a promising alternative for lithium extraction, providing both environmental and economic benefits. This review underscores the significance of lithium recycling and systematically examines recent advances in extraction processes, focusing on the extraction of lithium salts from spent cathode and anode materials, while addressing key challenges such as impurity control. Further, innovative lithium reintegration pathways, particularly direct regeneration methods utilizing carbonate salts are reviewed. By broadening the scope of extracted lithium compounds beyond conventional carbonates, how expanding extraction media can enhance the feasibility of a closed‐loop lithium supply is demonstrated. The proposed “lithium extraction‐reintegration” framework not only improves resource circularity but also establishes a foundation for securing lithium in the battery economy. This review aims to inspire future research and industrial efforts toward closing the lithium supply loop, bridging critical gaps in sustainable battery material recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信