通过敲除胆绿素还原酶实现深层组织高灵敏度多模态成像和光遗传学操作

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ludmila A. Kasatkina, Chenshuo Ma, Huaxin Sheng, Matthew Lowerison, Luca Menozzi, Mikhail Baloban, Yuqi Tang, Yirui Xu, Lucas Humayun, Tri Vu, Pengfei Song, Junjie Yao, Vladislav V. Verkhusha
{"title":"通过敲除胆绿素还原酶实现深层组织高灵敏度多模态成像和光遗传学操作","authors":"Ludmila A. Kasatkina, Chenshuo Ma, Huaxin Sheng, Matthew Lowerison, Luca Menozzi, Mikhail Baloban, Yuqi Tang, Yirui Xu, Lucas Humayun, Tri Vu, Pengfei Song, Junjie Yao, Vladislav V. Verkhusha","doi":"10.1038/s41467-025-61532-4","DOIUrl":null,"url":null,"abstract":"<p>Performance of near-infrared probes and optogenetic tools derived from bacterial phytochromes is limited by availability of their biliverdin chromophore. To address this, we use a biliverdin reductase-A knock-out mouse model (Blvra<sup>−/−</sup>), which elevates endogenous biliverdin levels. We show that Blvra⁻/⁻ significantly enhances function of bacterial phytochrome-based systems. Light-controlled transcription using iLight optogenetic tool improves ~25-fold in Blvra<sup>−/−</sup> cells, compared to wild-type controls, and achieves ~100-fold activation in neurons. Light-induced insulin production in Blvra<sup>−/−</sup> mice reduces blood glucose by ~60% in diabetes model. To overcome depth limitations in imaging, we employ 3D photoacoustic, ultrasound, and two-photon fluorescence microscopy. This enables simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of brain vasculature at depths of ~7 mm through intact scalp and skull. Two-photon microscopy achieves cellular resolution of miRFP720-expressing neurons at ~2.2 mm depth. Overall, Blvra<sup>−/−</sup> model represents powerful platform for improving efficacy of biliverdin-dependent tools for deep-tissue imaging and optogenetic manipulation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-tissue high-sensitivity multimodal imaging and optogenetic manipulation enabled by biliverdin reductase knockout\",\"authors\":\"Ludmila A. Kasatkina, Chenshuo Ma, Huaxin Sheng, Matthew Lowerison, Luca Menozzi, Mikhail Baloban, Yuqi Tang, Yirui Xu, Lucas Humayun, Tri Vu, Pengfei Song, Junjie Yao, Vladislav V. Verkhusha\",\"doi\":\"10.1038/s41467-025-61532-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Performance of near-infrared probes and optogenetic tools derived from bacterial phytochromes is limited by availability of their biliverdin chromophore. To address this, we use a biliverdin reductase-A knock-out mouse model (Blvra<sup>−/−</sup>), which elevates endogenous biliverdin levels. We show that Blvra⁻/⁻ significantly enhances function of bacterial phytochrome-based systems. Light-controlled transcription using iLight optogenetic tool improves ~25-fold in Blvra<sup>−/−</sup> cells, compared to wild-type controls, and achieves ~100-fold activation in neurons. Light-induced insulin production in Blvra<sup>−/−</sup> mice reduces blood glucose by ~60% in diabetes model. To overcome depth limitations in imaging, we employ 3D photoacoustic, ultrasound, and two-photon fluorescence microscopy. This enables simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of brain vasculature at depths of ~7 mm through intact scalp and skull. Two-photon microscopy achieves cellular resolution of miRFP720-expressing neurons at ~2.2 mm depth. Overall, Blvra<sup>−/−</sup> model represents powerful platform for improving efficacy of biliverdin-dependent tools for deep-tissue imaging and optogenetic manipulation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61532-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61532-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

来自细菌光敏色素的近红外探针和光遗传学工具的性能受到其胆绿素发色团的可用性的限制。为了解决这个问题,我们使用了胆绿素还原酶- a敲除小鼠模型(Blvra - / -),该模型可提高内源性胆绿素水平。我们发现Blvra(毒血症)可以显著增强细菌光光色素系统的功能。与野生型对照相比,使用iLight光遗传工具的Blvra−/−细胞的光控转录提高了约25倍,并且在神经元中实现了约100倍的激活。在糖尿病模型中,Blvra - / -小鼠光诱导胰岛素产生可使血糖降低约60%。为了克服成像的深度限制,我们采用了三维光声、超声和双光子荧光显微镜。这样可以同时光声成像神经元中的DrBphP和超分辨率超声定位显微镜下的脑血管在~ 7mm深度通过完整的头皮和颅骨。双光子显微镜实现了表达mirfp720的神经元在~2.2 mm深度的细胞分辨率。总的来说,Blvra - / -模型代表了一个强大的平台,可以提高依赖胆绿素的工具在深部组织成像和光遗传学操作中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep-tissue high-sensitivity multimodal imaging and optogenetic manipulation enabled by biliverdin reductase knockout

Deep-tissue high-sensitivity multimodal imaging and optogenetic manipulation enabled by biliverdin reductase knockout

Performance of near-infrared probes and optogenetic tools derived from bacterial phytochromes is limited by availability of their biliverdin chromophore. To address this, we use a biliverdin reductase-A knock-out mouse model (Blvra−/−), which elevates endogenous biliverdin levels. We show that Blvra⁻/⁻ significantly enhances function of bacterial phytochrome-based systems. Light-controlled transcription using iLight optogenetic tool improves ~25-fold in Blvra−/− cells, compared to wild-type controls, and achieves ~100-fold activation in neurons. Light-induced insulin production in Blvra−/− mice reduces blood glucose by ~60% in diabetes model. To overcome depth limitations in imaging, we employ 3D photoacoustic, ultrasound, and two-photon fluorescence microscopy. This enables simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of brain vasculature at depths of ~7 mm through intact scalp and skull. Two-photon microscopy achieves cellular resolution of miRFP720-expressing neurons at ~2.2 mm depth. Overall, Blvra−/− model represents powerful platform for improving efficacy of biliverdin-dependent tools for deep-tissue imaging and optogenetic manipulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信