具有离子整流蜂窝状骨架的高强度超薄固态电解质,用于锂金属电池,无外部压力

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kexin Liu, Yun Xie, Tao Ding, Cong Guo, Pan Guo, Jie Liu, Xing Liu, Liyi Shi, Zhihao Pan, Xuesong Cai, Jianming Wang, Zhuyi Wang, Guosheng Shi, Shuai Yuan
{"title":"具有离子整流蜂窝状骨架的高强度超薄固态电解质,用于锂金属电池,无外部压力","authors":"Kexin Liu, Yun Xie, Tao Ding, Cong Guo, Pan Guo, Jie Liu, Xing Liu, Liyi Shi, Zhihao Pan, Xuesong Cai, Jianming Wang, Zhuyi Wang, Guosheng Shi, Shuai Yuan","doi":"10.1002/adfm.202511558","DOIUrl":null,"url":null,"abstract":"This work breaks the long‐standing thickness‐performance trade‐off in solid‐state electrolytes by designing an ultrathin (10 µm) membrane featuring an ion‐rectifying honeycomb‐like skeleton. The composite skeleton integrates boron nitride nanofibers (BNNFs) and lithiated nafion (Linafion) mosaics, simultaneously enabling rapid Li<jats:sup>+</jats:sup> transport and reinforcing mechanical robustness. The BNNFs provide abundant Lewis acid sites to anchor TFSI<jats:sup>‐</jats:sup> anions, while Linafion domains facilitate rapid cation exchange via sulfonic acid groups, synergistically promoting Li<jats:sup>+</jats:sup> dissociation from both lithium salts and poly(ester‐ether). This unique ion‐rectification mechanism achieves ultrafast Li⁺ conduction with a low activation energy (0.099 eV), yielding a remarkable room‐temperature ionic conductivity of 5.5 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> and a high Li<jats:sup>+</jats:sup> transference number of 0.85. The all solid‐state electrolyte membrane simultaneously exhibits exceptional tensile strength (30 MPa) and compatibility with high‐loading NCM811 cathodes (12 mg cm<jats:sup>−2</jats:sup>) and ultrathin lithium anodes (40 µm). The pouch‐type full cells deliver high energy densities (316.6 Wh kg<jats:sup>−1</jats:sup>, 838.1 Wh L<jats:sup>−1</jats:sup>) and cycling stability (92.2% retention after 100 cycles) at 25 °C. Notably, the full cell can work in a wide temperature range, while maintaining 120.6 mAh g<jats:sup>−1</jats:sup> at ‐10 °C without external pressure. This strategy enables practical high‐energy solid‐state batteries using ultrathin electrolytes with robust mechanics, rapid conduction, and interfacial stability.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"195 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐Strength Ultrathin Solid‐State Electrolyte with Ion‐Rectifying Honeycomb‐Like Skeleton for Lithium Metal Batteries Free from External Pressure\",\"authors\":\"Kexin Liu, Yun Xie, Tao Ding, Cong Guo, Pan Guo, Jie Liu, Xing Liu, Liyi Shi, Zhihao Pan, Xuesong Cai, Jianming Wang, Zhuyi Wang, Guosheng Shi, Shuai Yuan\",\"doi\":\"10.1002/adfm.202511558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work breaks the long‐standing thickness‐performance trade‐off in solid‐state electrolytes by designing an ultrathin (10 µm) membrane featuring an ion‐rectifying honeycomb‐like skeleton. The composite skeleton integrates boron nitride nanofibers (BNNFs) and lithiated nafion (Linafion) mosaics, simultaneously enabling rapid Li<jats:sup>+</jats:sup> transport and reinforcing mechanical robustness. The BNNFs provide abundant Lewis acid sites to anchor TFSI<jats:sup>‐</jats:sup> anions, while Linafion domains facilitate rapid cation exchange via sulfonic acid groups, synergistically promoting Li<jats:sup>+</jats:sup> dissociation from both lithium salts and poly(ester‐ether). This unique ion‐rectification mechanism achieves ultrafast Li⁺ conduction with a low activation energy (0.099 eV), yielding a remarkable room‐temperature ionic conductivity of 5.5 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> and a high Li<jats:sup>+</jats:sup> transference number of 0.85. The all solid‐state electrolyte membrane simultaneously exhibits exceptional tensile strength (30 MPa) and compatibility with high‐loading NCM811 cathodes (12 mg cm<jats:sup>−2</jats:sup>) and ultrathin lithium anodes (40 µm). The pouch‐type full cells deliver high energy densities (316.6 Wh kg<jats:sup>−1</jats:sup>, 838.1 Wh L<jats:sup>−1</jats:sup>) and cycling stability (92.2% retention after 100 cycles) at 25 °C. Notably, the full cell can work in a wide temperature range, while maintaining 120.6 mAh g<jats:sup>−1</jats:sup> at ‐10 °C without external pressure. This strategy enables practical high‐energy solid‐state batteries using ultrathin electrolytes with robust mechanics, rapid conduction, and interfacial stability.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511558\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511558","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作通过设计一种超薄(10微米)膜,具有离子整流蜂窝状骨架,打破了固态电解质长期存在的厚度-性能权衡。复合骨架集成了氮化硼纳米纤维(BNNFs)和锂化国家(Linafion)马赛克,同时实现Li+的快速运输和增强机械坚固性。BNNFs提供了丰富的Lewis酸位点来固定TFSI阴离子,而Linafion结构域通过磺酸基团促进快速阳离子交换,协同促进锂盐和聚酯醚的Li+解离。这种独特的离子整流机制以低活化能(0.099 eV)实现了Li+的超快导电,产生了5.5 × 10−4 S cm−1的室温离子电导率和0.85的高Li+转移数。全固态电解质膜同时具有优异的抗拉强度(30 MPa),并与高负载NCM811阴极(12 mg cm - 2)和超薄锂阳极(40µm)兼容。在25°C下,袋型全电池具有高能量密度(316.6 Wh kg−1,838.1 Wh L−1)和循环稳定性(100次循环后保留率为92.2%)。值得注意的是,完整的电池可以在很宽的温度范围内工作,同时在‐10°C下保持120.6 mAh g - 1,没有外部压力。这种策略使使用超薄电解质的实用高能固态电池具有强大的力学,快速传导和界面稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High‐Strength Ultrathin Solid‐State Electrolyte with Ion‐Rectifying Honeycomb‐Like Skeleton for Lithium Metal Batteries Free from External Pressure
This work breaks the long‐standing thickness‐performance trade‐off in solid‐state electrolytes by designing an ultrathin (10 µm) membrane featuring an ion‐rectifying honeycomb‐like skeleton. The composite skeleton integrates boron nitride nanofibers (BNNFs) and lithiated nafion (Linafion) mosaics, simultaneously enabling rapid Li+ transport and reinforcing mechanical robustness. The BNNFs provide abundant Lewis acid sites to anchor TFSI anions, while Linafion domains facilitate rapid cation exchange via sulfonic acid groups, synergistically promoting Li+ dissociation from both lithium salts and poly(ester‐ether). This unique ion‐rectification mechanism achieves ultrafast Li⁺ conduction with a low activation energy (0.099 eV), yielding a remarkable room‐temperature ionic conductivity of 5.5 × 10−4 S cm−1 and a high Li+ transference number of 0.85. The all solid‐state electrolyte membrane simultaneously exhibits exceptional tensile strength (30 MPa) and compatibility with high‐loading NCM811 cathodes (12 mg cm−2) and ultrathin lithium anodes (40 µm). The pouch‐type full cells deliver high energy densities (316.6 Wh kg−1, 838.1 Wh L−1) and cycling stability (92.2% retention after 100 cycles) at 25 °C. Notably, the full cell can work in a wide temperature range, while maintaining 120.6 mAh g−1 at ‐10 °C without external pressure. This strategy enables practical high‐energy solid‐state batteries using ultrathin electrolytes with robust mechanics, rapid conduction, and interfacial stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信