聚合物电解质预锂化策略的双重增强电荷转移为超长寿命全固态电池提供了强大的富寿命SEI

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yun Zheng, Na Yang, Song Duan, Zhenghao Li, Rui Gao, Yanfei Zhu, Hongyao Wang, Tianzhu Zhang, Gaoran Li, Dan Luo, Leixin Yang, Dongniu Wang, Wei Yan, Jiujun Zhang, Zhongwei Chen
{"title":"聚合物电解质预锂化策略的双重增强电荷转移为超长寿命全固态电池提供了强大的富寿命SEI","authors":"Yun Zheng, Na Yang, Song Duan, Zhenghao Li, Rui Gao, Yanfei Zhu, Hongyao Wang, Tianzhu Zhang, Gaoran Li, Dan Luo, Leixin Yang, Dongniu Wang, Wei Yan, Jiujun Zhang, Zhongwei Chen","doi":"10.1002/adfm.202511011","DOIUrl":null,"url":null,"abstract":"Lithium fluoride (LiF)‐rich solid electrolyte interface (SEI) is critical for enabling the stable operation of polymer‐based all‐solid‐state lithium‐metal batteries (ASSLMBs). Precisely controlling the C─F dissociation chemistry in fluorine‐containing lithium salts to construct a LiF‐rich SEI is a logically viable but still challenging approach. Current strategies for constructing LiF‐rich SEI primarily focus on designing non‐metal polar groups and related structures. In contrast, approaches leveraging metal‐based electron donors to facilitate charge transfer for C─F bond cleavage and LiF formation remain largely unexplored. Herein, a dual‐enhanced charge transfer mechanism through prelithiation strategy is proposed in solid polymer electrolyte (SPE) for C─F bond cleavage. The charge transfer occurs between LiTFSI and the introduced metal sites and further enhanced by lithiation design, thereby achieving a robust LiF‐rich SEI. The achieving SPEs enable an excellent cyclability of Li|Li cell over 3800 h at 0.3 mA cm<jats:sup>−2</jats:sup>. Li||LiFePO<jats:sub>4</jats:sub> ASSLMBs demonstrate a high Coulombic efficiency of ≈100% and a stability of 1200 cycles with capacity retention of 80% at 2C. The corresponding pouch cell delivers a high average areal capacity of 2.41 mAh cm<jats:sup>−2</jats:sup> over 1600 h. This work offers a novel approach for constructing LiF‐rich SEI toward durable ASSLMBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual‐Enhanced Charge Transfer through Prelithiation Strategy in Polymer Electrolyte Enables Robust LiF‐Rich SEI for Ultralong‐Life All‐Solid‐State Batteries\",\"authors\":\"Yun Zheng, Na Yang, Song Duan, Zhenghao Li, Rui Gao, Yanfei Zhu, Hongyao Wang, Tianzhu Zhang, Gaoran Li, Dan Luo, Leixin Yang, Dongniu Wang, Wei Yan, Jiujun Zhang, Zhongwei Chen\",\"doi\":\"10.1002/adfm.202511011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium fluoride (LiF)‐rich solid electrolyte interface (SEI) is critical for enabling the stable operation of polymer‐based all‐solid‐state lithium‐metal batteries (ASSLMBs). Precisely controlling the C─F dissociation chemistry in fluorine‐containing lithium salts to construct a LiF‐rich SEI is a logically viable but still challenging approach. Current strategies for constructing LiF‐rich SEI primarily focus on designing non‐metal polar groups and related structures. In contrast, approaches leveraging metal‐based electron donors to facilitate charge transfer for C─F bond cleavage and LiF formation remain largely unexplored. Herein, a dual‐enhanced charge transfer mechanism through prelithiation strategy is proposed in solid polymer electrolyte (SPE) for C─F bond cleavage. The charge transfer occurs between LiTFSI and the introduced metal sites and further enhanced by lithiation design, thereby achieving a robust LiF‐rich SEI. The achieving SPEs enable an excellent cyclability of Li|Li cell over 3800 h at 0.3 mA cm<jats:sup>−2</jats:sup>. Li||LiFePO<jats:sub>4</jats:sub> ASSLMBs demonstrate a high Coulombic efficiency of ≈100% and a stability of 1200 cycles with capacity retention of 80% at 2C. The corresponding pouch cell delivers a high average areal capacity of 2.41 mAh cm<jats:sup>−2</jats:sup> over 1600 h. This work offers a novel approach for constructing LiF‐rich SEI toward durable ASSLMBs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富氟化锂(liff)固体电解质界面(SEI)对于实现聚合物基全固态锂金属电池(asslmb)的稳定运行至关重要。精确控制含氟锂盐中的C─F解离化学以构建富liff SEI是一种逻辑上可行但仍然具有挑战性的方法。目前构建富生命SEI的策略主要集中在设计非金属极性基团和相关结构。相比之下,利用金属基电子供体促进C─F键切割和生命形成的电荷转移的方法在很大程度上仍未被探索。本文提出了一种在固体聚合物电解质(SPE)中通过预锂化策略进行C─F键裂解的双增强电荷转移机制。电荷转移发生在LiTFSI和引入的金属位点之间,并通过锂化设计进一步增强,从而实现强大的富锂SEI。所实现的spe使Li|锂电池在0.3 mA cm−2下在3800小时内具有优异的循环性能。Li||LiFePO4 asslmb具有≈100%的高库仑效率和1200次循环的稳定性,在2C下容量保持率为80%。相应的袋状电池在1600小时内提供了2.41 mAh cm−2的高平均面积容量。这项工作为构建富生命的SEI到耐用的asslmb提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual‐Enhanced Charge Transfer through Prelithiation Strategy in Polymer Electrolyte Enables Robust LiF‐Rich SEI for Ultralong‐Life All‐Solid‐State Batteries
Lithium fluoride (LiF)‐rich solid electrolyte interface (SEI) is critical for enabling the stable operation of polymer‐based all‐solid‐state lithium‐metal batteries (ASSLMBs). Precisely controlling the C─F dissociation chemistry in fluorine‐containing lithium salts to construct a LiF‐rich SEI is a logically viable but still challenging approach. Current strategies for constructing LiF‐rich SEI primarily focus on designing non‐metal polar groups and related structures. In contrast, approaches leveraging metal‐based electron donors to facilitate charge transfer for C─F bond cleavage and LiF formation remain largely unexplored. Herein, a dual‐enhanced charge transfer mechanism through prelithiation strategy is proposed in solid polymer electrolyte (SPE) for C─F bond cleavage. The charge transfer occurs between LiTFSI and the introduced metal sites and further enhanced by lithiation design, thereby achieving a robust LiF‐rich SEI. The achieving SPEs enable an excellent cyclability of Li|Li cell over 3800 h at 0.3 mA cm−2. Li||LiFePO4 ASSLMBs demonstrate a high Coulombic efficiency of ≈100% and a stability of 1200 cycles with capacity retention of 80% at 2C. The corresponding pouch cell delivers a high average areal capacity of 2.41 mAh cm−2 over 1600 h. This work offers a novel approach for constructing LiF‐rich SEI toward durable ASSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信