生物质衍生的双层气凝胶用于全天候连续的大气水收集:协同吸附-解吸和抗菌应用

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenying Duan, Panpan Feng, Meichun Ding, Chen‐Yang Liu, Chenwei Li, Jun Zhang
{"title":"生物质衍生的双层气凝胶用于全天候连续的大气水收集:协同吸附-解吸和抗菌应用","authors":"Zhenying Duan, Panpan Feng, Meichun Ding, Chen‐Yang Liu, Chenwei Li, Jun Zhang","doi":"10.1002/adfm.202511143","DOIUrl":null,"url":null,"abstract":"Sorption‐based atmospheric water harvesting (SAWH) provides a sustainable approach to addressing global freshwater scarcity, with significant potential for freshwater production and renewable energy utilization. However, most SAWH systems rely on hygroscopic salts, which suffer from salt leakage and agglomeration. Moreover, conventional SAWH devices operate intermittently, leading to complex processes and low energy‐time efficiency. Herein, a salt‐free, biomass‐derived bilayer aerogel, composed of chitosan, sodium alginate, and carboxymethyl cellulose, enabling continuous all‐day SAWH is presented via simultaneous adsorption‐desorption. The superhydrophilic, hierarchically porous structure with interconnected channels and a top photothermal layer achieves a high water adsorption capability of 3.97 g g<jats:sup>−1</jats:sup> at relative humidity of 90% and a rapid desorption rate of 3.33 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup> under one‐sun illumination. The feasibility of a simple prototype is demonstrated for automated and continuous SAWH under natural conditions, achieving a high water production of 3234 mL<jats:sub>water</jats:sub> kg<jats:sub>sorbent</jats:sub><jats:sup>−1</jats:sup> day<jats:sup>−1</jats:sup> over 1 week, and outperforming previously reported SAWH systems. Moreover, the bilayer aerogel's intrinsic antibacterial properties ensure the microbial safety of the harvested water, addressing a key challenge in practical SAWH applications. This maintenance‐free design simplifies operation and provides a sustainable, off‐grid solution for freshwater production in arid and remote regions, advancing UN Sustainable Development Goal 6.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass‐Derived Bilayer Aerogels for Continuous All‐Day Atmospheric Water Harvesting: Synergistic Adsorption‐Desorption and Antimicrobial Applications\",\"authors\":\"Zhenying Duan, Panpan Feng, Meichun Ding, Chen‐Yang Liu, Chenwei Li, Jun Zhang\",\"doi\":\"10.1002/adfm.202511143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorption‐based atmospheric water harvesting (SAWH) provides a sustainable approach to addressing global freshwater scarcity, with significant potential for freshwater production and renewable energy utilization. However, most SAWH systems rely on hygroscopic salts, which suffer from salt leakage and agglomeration. Moreover, conventional SAWH devices operate intermittently, leading to complex processes and low energy‐time efficiency. Herein, a salt‐free, biomass‐derived bilayer aerogel, composed of chitosan, sodium alginate, and carboxymethyl cellulose, enabling continuous all‐day SAWH is presented via simultaneous adsorption‐desorption. The superhydrophilic, hierarchically porous structure with interconnected channels and a top photothermal layer achieves a high water adsorption capability of 3.97 g g<jats:sup>−1</jats:sup> at relative humidity of 90% and a rapid desorption rate of 3.33 kg m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup> under one‐sun illumination. The feasibility of a simple prototype is demonstrated for automated and continuous SAWH under natural conditions, achieving a high water production of 3234 mL<jats:sub>water</jats:sub> kg<jats:sub>sorbent</jats:sub><jats:sup>−1</jats:sup> day<jats:sup>−1</jats:sup> over 1 week, and outperforming previously reported SAWH systems. Moreover, the bilayer aerogel's intrinsic antibacterial properties ensure the microbial safety of the harvested water, addressing a key challenge in practical SAWH applications. This maintenance‐free design simplifies operation and provides a sustainable, off‐grid solution for freshwater production in arid and remote regions, advancing UN Sustainable Development Goal 6.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511143\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511143","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于吸附的大气集水(SAWH)为解决全球淡水短缺问题提供了一种可持续的方法,在淡水生产和可再生能源利用方面具有巨大潜力。然而,大多数SAWH系统依赖于吸湿性盐,这种盐容易发生盐泄漏和结块。此外,传统的SAWH设备间歇性运行,导致工艺复杂,能量时间效率低。本文提出了一种无盐、生物质衍生的双层气凝胶,由壳聚糖、海藻酸钠和羧甲基纤维素组成,通过同时吸附-解吸,实现全天连续的SAWH。在相对湿度为90%的条件下,超亲水性、层状多孔结构具有相互连接的通道和顶部光热层,具有3.97 g g−1的高吸水性和3.33 kg m−2 h−1的快速解吸速率。在自然条件下,一个简单的原型证明了自动化和连续SAWH的可行性,在1周内实现了3234 ml水吸附剂- 1天- 1的高产水量,优于先前报道的SAWH系统。此外,双层气凝胶固有的抗菌特性确保了收集水的微生物安全性,解决了实际SAWH应用中的一个关键挑战。这种免维护的设计简化了操作,为干旱和偏远地区的淡水生产提供了可持续的离网解决方案,推进了联合国可持续发展目标6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomass‐Derived Bilayer Aerogels for Continuous All‐Day Atmospheric Water Harvesting: Synergistic Adsorption‐Desorption and Antimicrobial Applications
Sorption‐based atmospheric water harvesting (SAWH) provides a sustainable approach to addressing global freshwater scarcity, with significant potential for freshwater production and renewable energy utilization. However, most SAWH systems rely on hygroscopic salts, which suffer from salt leakage and agglomeration. Moreover, conventional SAWH devices operate intermittently, leading to complex processes and low energy‐time efficiency. Herein, a salt‐free, biomass‐derived bilayer aerogel, composed of chitosan, sodium alginate, and carboxymethyl cellulose, enabling continuous all‐day SAWH is presented via simultaneous adsorption‐desorption. The superhydrophilic, hierarchically porous structure with interconnected channels and a top photothermal layer achieves a high water adsorption capability of 3.97 g g−1 at relative humidity of 90% and a rapid desorption rate of 3.33 kg m−2 h−1 under one‐sun illumination. The feasibility of a simple prototype is demonstrated for automated and continuous SAWH under natural conditions, achieving a high water production of 3234 mLwater kgsorbent−1 day−1 over 1 week, and outperforming previously reported SAWH systems. Moreover, the bilayer aerogel's intrinsic antibacterial properties ensure the microbial safety of the harvested water, addressing a key challenge in practical SAWH applications. This maintenance‐free design simplifies operation and provides a sustainable, off‐grid solution for freshwater production in arid and remote regions, advancing UN Sustainable Development Goal 6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信