{"title":"生成模型使用健康和病变图像对进行像素级胸部x线病理定位","authors":"Kaiming Dong, Yuxiao Cheng, Kunlun He, Jinli Suo","doi":"10.1038/s41551-025-01456-y","DOIUrl":null,"url":null,"abstract":"<p>Medical artificial intelligence (AI) offers potential for automatic pathological interpretation, but a practicable AI model demands both pixel-level accuracy and high explainability for diagnosis. The construction of such models relies on substantial training data with fine-grained labelling, which is impractical in real applications. To circumvent this barrier, we propose a prompt-driven constrained generative model to produce anatomically aligned healthy and diseased image pairs and learn a pathology localization model in a supervised manner. This paradigm provides high-fidelity labelled data and addresses the lack of chest X-ray images with labelling at fine scales. Benefitting from the emerging text-driven generative model and the incorporated constraint, our model presents promising localization accuracy of subtle pathologies, high explainability for clinical decisions, and good transferability to many unseen pathological categories such as new prompts and mixed pathologies. These advantageous features establish our model as a promising solution to assist chest X-ray analysis. In addition, the proposed approach is also inspiring for other tasks lacking massive training data and time-consuming manual labelling.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"2 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generative model uses healthy and diseased image pairs for pixel-level chest X-ray pathology localization\",\"authors\":\"Kaiming Dong, Yuxiao Cheng, Kunlun He, Jinli Suo\",\"doi\":\"10.1038/s41551-025-01456-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medical artificial intelligence (AI) offers potential for automatic pathological interpretation, but a practicable AI model demands both pixel-level accuracy and high explainability for diagnosis. The construction of such models relies on substantial training data with fine-grained labelling, which is impractical in real applications. To circumvent this barrier, we propose a prompt-driven constrained generative model to produce anatomically aligned healthy and diseased image pairs and learn a pathology localization model in a supervised manner. This paradigm provides high-fidelity labelled data and addresses the lack of chest X-ray images with labelling at fine scales. Benefitting from the emerging text-driven generative model and the incorporated constraint, our model presents promising localization accuracy of subtle pathologies, high explainability for clinical decisions, and good transferability to many unseen pathological categories such as new prompts and mixed pathologies. These advantageous features establish our model as a promising solution to assist chest X-ray analysis. In addition, the proposed approach is also inspiring for other tasks lacking massive training data and time-consuming manual labelling.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01456-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01456-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A generative model uses healthy and diseased image pairs for pixel-level chest X-ray pathology localization
Medical artificial intelligence (AI) offers potential for automatic pathological interpretation, but a practicable AI model demands both pixel-level accuracy and high explainability for diagnosis. The construction of such models relies on substantial training data with fine-grained labelling, which is impractical in real applications. To circumvent this barrier, we propose a prompt-driven constrained generative model to produce anatomically aligned healthy and diseased image pairs and learn a pathology localization model in a supervised manner. This paradigm provides high-fidelity labelled data and addresses the lack of chest X-ray images with labelling at fine scales. Benefitting from the emerging text-driven generative model and the incorporated constraint, our model presents promising localization accuracy of subtle pathologies, high explainability for clinical decisions, and good transferability to many unseen pathological categories such as new prompts and mixed pathologies. These advantageous features establish our model as a promising solution to assist chest X-ray analysis. In addition, the proposed approach is also inspiring for other tasks lacking massive training data and time-consuming manual labelling.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.