自循环钌CuFe2O4电催化剂的高效中性氨电合成

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuning Wang, Wenyu Zhang, Yang Yang, Jinmeng Tong, Zhibo Liu, Tao Gan, Ali Han, Gang Liu
{"title":"自循环钌CuFe2O4电催化剂的高效中性氨电合成","authors":"Yuning Wang,&nbsp;Wenyu Zhang,&nbsp;Yang Yang,&nbsp;Jinmeng Tong,&nbsp;Zhibo Liu,&nbsp;Tao Gan,&nbsp;Ali Han,&nbsp;Gang Liu","doi":"10.1002/adma.202507277","DOIUrl":null,"url":null,"abstract":"<p>The high performance of Fe-based electrocatalyst for electrochemical nitrate reduction reaction to ammonia (eNO<sub>3</sub><sup>−</sup>RR-to-NH<sub>3</sub>) is currently constrained by low NH<sub>3</sub> selectivity and insufficient stability under high current density. Hence, the incorporation of ruthenium single-atom into the CuFe<sub>2</sub>O<sub>4</sub> (Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub>) with self-recycling property is developed. The Cu and Ru sites synergistically promote the water dissociation and facilitate the redeposition of in situ adsorbed Fe<sup>2+</sup> (Fe<sup>2+</sup><sub>ad</sub>) as α-FeOOH by self-reinforcing local alkalinity at the Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub> surface, thereby achieving high activity and robust stability for eNO<sub>3</sub><sup>−</sup>RR-to-NH<sub>3</sub> process. The optimized Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub> delivers excellent performance with a 97.9% NH<sub>3</sub> Faradaic efficiency and 99.8% NH<sub>3</sub> selectivity at −0.59 V versus RHE in neutral electrolyte. Remarkably, in a membrane electrode assembly (MEA) system, it achieves a large current density of 1000 mA cm<sup>−2</sup> at 2.5 V with robust stability, accompanied by &gt;95% NH<sub>3</sub> selectivity, a nitrate removal rate of 4.17 mmol h<sup>−1</sup> cm<sup>−2</sup>, and an NH<sub>3</sub> production rate of 3.97 mmol h<sup>−1</sup> cm<sup>−2</sup>. Theoretical calculations have demonstrated that Ru site in the Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub> significantly enhances NO<sub>3</sub><sup>−</sup> adsorption and lowers the energy barrier for the potential determining step (*HNO<sub>2</sub> → *NO). This work offers valuable insights into designing autonomous local alkalinity microenvironments with self-recycling properties on cost-effective Cu/Fe oxides.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 39","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Self-Recycling Ruthenium Incorporated CuFe2O4 Electrocatalyst for Efficient Neutral Ammonia Electrosynthesis\",\"authors\":\"Yuning Wang,&nbsp;Wenyu Zhang,&nbsp;Yang Yang,&nbsp;Jinmeng Tong,&nbsp;Zhibo Liu,&nbsp;Tao Gan,&nbsp;Ali Han,&nbsp;Gang Liu\",\"doi\":\"10.1002/adma.202507277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The high performance of Fe-based electrocatalyst for electrochemical nitrate reduction reaction to ammonia (eNO<sub>3</sub><sup>−</sup>RR-to-NH<sub>3</sub>) is currently constrained by low NH<sub>3</sub> selectivity and insufficient stability under high current density. Hence, the incorporation of ruthenium single-atom into the CuFe<sub>2</sub>O<sub>4</sub> (Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub>) with self-recycling property is developed. The Cu and Ru sites synergistically promote the water dissociation and facilitate the redeposition of in situ adsorbed Fe<sup>2+</sup> (Fe<sup>2+</sup><sub>ad</sub>) as α-FeOOH by self-reinforcing local alkalinity at the Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub> surface, thereby achieving high activity and robust stability for eNO<sub>3</sub><sup>−</sup>RR-to-NH<sub>3</sub> process. The optimized Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub> delivers excellent performance with a 97.9% NH<sub>3</sub> Faradaic efficiency and 99.8% NH<sub>3</sub> selectivity at −0.59 V versus RHE in neutral electrolyte. Remarkably, in a membrane electrode assembly (MEA) system, it achieves a large current density of 1000 mA cm<sup>−2</sup> at 2.5 V with robust stability, accompanied by &gt;95% NH<sub>3</sub> selectivity, a nitrate removal rate of 4.17 mmol h<sup>−1</sup> cm<sup>−2</sup>, and an NH<sub>3</sub> production rate of 3.97 mmol h<sup>−1</sup> cm<sup>−2</sup>. Theoretical calculations have demonstrated that Ru site in the Ru<sub>SA</sub>-CuFe<sub>2</sub>O<sub>4</sub> significantly enhances NO<sub>3</sub><sup>−</sup> adsorption and lowers the energy barrier for the potential determining step (*HNO<sub>2</sub> → *NO). This work offers valuable insights into designing autonomous local alkalinity microenvironments with self-recycling properties on cost-effective Cu/Fe oxides.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 39\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507277\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507277","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硝酸电化学还原制氨反应中铁基电催化剂(eNO3 - r -to-NH3)的高性能目前受到NH3选择性低和高电流密度下稳定性不足的制约。因此,开发了钌单原子掺入具有自循环性能的CuFe2O4 (RuSA-CuFe2O4)中。Cu和Ru位点协同促进水解离,并通过在RuSA-CuFe2O4表面自增强局部碱度,促进原位吸附的Fe2+ (Fe2+ ad)以α-FeOOH的形式再沉积,从而实现eNO3 -r - nh3过程的高活性和稳健稳定性。与RHE相比,优化后的RuSA-CuFe2O4在中性电解质中具有97.9%的NH3法拉第效率和99.8%的NH3选择性。值得注意的是,在膜电极组件(MEA)系统中,它在2.5 V下实现了1000 mA cm-2的大电流密度,具有良好的稳定性,并具有>95%的NH3选择性,硝酸盐去除率为4.17 mmol h-1 cm-2, NH3生成率为3.97 mmol h-1 cm-2。理论计算表明,Ru在RuSA-CuFe2O4中的位置显著增强了NO3 -的吸附,降低了电位决定步骤(*HNO2→*NO)的能垒。这项工作为设计具有自循环特性的具有成本效益的Cu/Fe氧化物的自主局部碱性微环境提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Self-Recycling Ruthenium Incorporated CuFe2O4 Electrocatalyst for Efficient Neutral Ammonia Electrosynthesis

A Self-Recycling Ruthenium Incorporated CuFe2O4 Electrocatalyst for Efficient Neutral Ammonia Electrosynthesis

The high performance of Fe-based electrocatalyst for electrochemical nitrate reduction reaction to ammonia (eNO3RR-to-NH3) is currently constrained by low NH3 selectivity and insufficient stability under high current density. Hence, the incorporation of ruthenium single-atom into the CuFe2O4 (RuSA-CuFe2O4) with self-recycling property is developed. The Cu and Ru sites synergistically promote the water dissociation and facilitate the redeposition of in situ adsorbed Fe2+ (Fe2+ad) as α-FeOOH by self-reinforcing local alkalinity at the RuSA-CuFe2O4 surface, thereby achieving high activity and robust stability for eNO3RR-to-NH3 process. The optimized RuSA-CuFe2O4 delivers excellent performance with a 97.9% NH3 Faradaic efficiency and 99.8% NH3 selectivity at −0.59 V versus RHE in neutral electrolyte. Remarkably, in a membrane electrode assembly (MEA) system, it achieves a large current density of 1000 mA cm−2 at 2.5 V with robust stability, accompanied by >95% NH3 selectivity, a nitrate removal rate of 4.17 mmol h−1 cm−2, and an NH3 production rate of 3.97 mmol h−1 cm−2. Theoretical calculations have demonstrated that Ru site in the RuSA-CuFe2O4 significantly enhances NO3 adsorption and lowers the energy barrier for the potential determining step (*HNO2 → *NO). This work offers valuable insights into designing autonomous local alkalinity microenvironments with self-recycling properties on cost-effective Cu/Fe oxides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信