La/Ni-Co3O4核壳IrPt纳米合金用于超低贵金属负载的高性能双功能PEM电解。

IF 36.3 1区 材料科学 Q1 Engineering
Yifei Liu,Xinmeng Er,Xinyao Wang,Hangxing Ren,Wenchao Wang,Feng Cao,Taiyan Zhang,Pan Liu,Yakun Yuan,Fangbo Yu,Yang Ren,Fuqiang Huang,Wenjiang Ding,Lina Chong
{"title":"La/Ni-Co3O4核壳IrPt纳米合金用于超低贵金属负载的高性能双功能PEM电解。","authors":"Yifei Liu,Xinmeng Er,Xinyao Wang,Hangxing Ren,Wenchao Wang,Feng Cao,Taiyan Zhang,Pan Liu,Yakun Yuan,Fangbo Yu,Yang Ren,Fuqiang Huang,Wenjiang Ding,Lina Chong","doi":"10.1007/s40820-025-01845-7","DOIUrl":null,"url":null,"abstract":"The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium-platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm-2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm-2 and 0.075 mgPt cm-2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h-1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core-IrPtOx shell structure, enhances performance. The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"108 1","pages":"329"},"PeriodicalIF":36.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-Shell IrPt Nanoalloy on La/Ni-Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading.\",\"authors\":\"Yifei Liu,Xinmeng Er,Xinyao Wang,Hangxing Ren,Wenchao Wang,Feng Cao,Taiyan Zhang,Pan Liu,Yakun Yuan,Fangbo Yu,Yang Ren,Fuqiang Huang,Wenjiang Ding,Lina Chong\",\"doi\":\"10.1007/s40820-025-01845-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium-platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm-2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm-2 and 0.075 mgPt cm-2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h-1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core-IrPtOx shell structure, enhances performance. The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"108 1\",\"pages\":\"329\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-025-01845-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01845-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、耐用、贵金属用量少的双功能催化剂是推进质子交换膜水电解(PEMWE)的关键。我们提出了一种由镧和镍共掺杂钴氧化物支撑的铱铂纳米合金(IrPt),具有核壳结构,具有非晶IrPtOx壳和IrPt核。该催化剂在酸性介质中表现出优异的析氧和析氢双功能活性,在阳极和阴极分别为0.075 mgIr cm-2和0.075 mgPt cm-2的超低负载的PEMWE器件中,在1.72 V下分别达到2 A cm-2。它表现出优异的耐久性,持续水分解超过646 h,降解率仅为5 μV h-1,优于最先进的ir基催化剂。原位x射线吸收光谱和密度泛函理论模拟表明,优化的Ir和Pt之间的电荷再分配以及IrPt核- irptox壳结构提高了性能。Ir-O-Pt活性位点实现了析氧反应的双核机制和析氢反应的Volmer-Tafel机制,降低了动力学障碍。分层孔隙、丰富的氧空位和高电化学表面积进一步改善了电子和质量传递。这项工作为绿色制氢提供了一种经济有效的解决方案,并推动了PEMWE高性能双功能催化剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Core-Shell IrPt Nanoalloy on La/Ni-Co3O4 for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading.
The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis (PEMWE). We present an iridium-platinum nanoalloy (IrPt) supported on lanthanum and nickel co-doped cobalt oxide, featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core. This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media, achieving 2 A cm-2 at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm-2 and 0.075 mgPt cm-2 at anode and cathode, respectively. It demonstrates outstanding durability, sustaining water splitting for over 646 h with a degradation rate of only 5 μV h-1, outperforming state-of-the-art Ir-based catalysts. In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt, along with the IrPt core-IrPtOx shell structure, enhances performance. The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction, reducing kinetic barriers. Hierarchical porosity, abundant oxygen vacancies, and a high electrochemical surface area further improve electron and mass transfer. This work offers a cost-effective solution for green hydrogen production and advances the design of high-performance bifunctional catalysts for PEMWE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信