Guanhong Chen, Yuxuan Wang, Xin Zhang, Kai Jiang, Min Yu, Liping Fang* and Fangbai Li,
{"title":"水稻土中浮游植物驱动的砷甲基化:营养相互作用的关键作用。","authors":"Guanhong Chen, Yuxuan Wang, Xin Zhang, Kai Jiang, Min Yu, Liping Fang* and Fangbai Li, ","doi":"10.1021/acs.est.5c06047","DOIUrl":null,"url":null,"abstract":"<p >Arsenic (As) methylation facilitated by periphyton in paddy soils is crucial for its biogeochemical cycling and thus its bioavailability. However, the key functional taxa and underlying interactive metabolisms remain unclear due to the high complexity of the periphytic microbiome. Here, we employ DNA-stable isotope probing with metagenomic binning analysis to uncover the critical role of intrinsic trophic interactions in stimulating As methylation within the periphyton in association with soil inorganic carbon. Abundance of As-methylating microorganisms in the periphyton increases by 2.1-fold after bicarbonate addition. Members of phototrophs are predominantly responsible for regulating the stability of the periphytic microbiome, of which photoautotrophs (e.g., <i>Oscillatoriales</i>) initiate carbon fixation and constitute a major portion of As-methylating populations. These phototrophs further offer requisite organic substrates such as polysaccharides for heterotrophic bacteria (e.g., <i>Chitinophagales</i>) that in return foster the growth of the periphytic community, while these taxa simultaneously detoxify As through biomethylation to secure their ecological niches in periphyton. Such a symbiotic metabolism between phototrophs and heterotrophs facilitates carbon sequestration and shapes the functional community, collaboratively determining methylated As production in paddy soils. These findings offer new insights into the influence of trophic interactions within the periphyton on As speciation with potential implications for element cycling and soil remediation in paddy soils.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 29","pages":"15203–15214"},"PeriodicalIF":11.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periphyton-Driven Arsenic Methylation in Paddy Soils: The Crucial Role of Trophic Interactions\",\"authors\":\"Guanhong Chen, Yuxuan Wang, Xin Zhang, Kai Jiang, Min Yu, Liping Fang* and Fangbai Li, \",\"doi\":\"10.1021/acs.est.5c06047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Arsenic (As) methylation facilitated by periphyton in paddy soils is crucial for its biogeochemical cycling and thus its bioavailability. However, the key functional taxa and underlying interactive metabolisms remain unclear due to the high complexity of the periphytic microbiome. Here, we employ DNA-stable isotope probing with metagenomic binning analysis to uncover the critical role of intrinsic trophic interactions in stimulating As methylation within the periphyton in association with soil inorganic carbon. Abundance of As-methylating microorganisms in the periphyton increases by 2.1-fold after bicarbonate addition. Members of phototrophs are predominantly responsible for regulating the stability of the periphytic microbiome, of which photoautotrophs (e.g., <i>Oscillatoriales</i>) initiate carbon fixation and constitute a major portion of As-methylating populations. These phototrophs further offer requisite organic substrates such as polysaccharides for heterotrophic bacteria (e.g., <i>Chitinophagales</i>) that in return foster the growth of the periphytic community, while these taxa simultaneously detoxify As through biomethylation to secure their ecological niches in periphyton. Such a symbiotic metabolism between phototrophs and heterotrophs facilitates carbon sequestration and shapes the functional community, collaboratively determining methylated As production in paddy soils. These findings offer new insights into the influence of trophic interactions within the periphyton on As speciation with potential implications for element cycling and soil remediation in paddy soils.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 29\",\"pages\":\"15203–15214\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c06047\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c06047","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Periphyton-Driven Arsenic Methylation in Paddy Soils: The Crucial Role of Trophic Interactions
Arsenic (As) methylation facilitated by periphyton in paddy soils is crucial for its biogeochemical cycling and thus its bioavailability. However, the key functional taxa and underlying interactive metabolisms remain unclear due to the high complexity of the periphytic microbiome. Here, we employ DNA-stable isotope probing with metagenomic binning analysis to uncover the critical role of intrinsic trophic interactions in stimulating As methylation within the periphyton in association with soil inorganic carbon. Abundance of As-methylating microorganisms in the periphyton increases by 2.1-fold after bicarbonate addition. Members of phototrophs are predominantly responsible for regulating the stability of the periphytic microbiome, of which photoautotrophs (e.g., Oscillatoriales) initiate carbon fixation and constitute a major portion of As-methylating populations. These phototrophs further offer requisite organic substrates such as polysaccharides for heterotrophic bacteria (e.g., Chitinophagales) that in return foster the growth of the periphytic community, while these taxa simultaneously detoxify As through biomethylation to secure their ecological niches in periphyton. Such a symbiotic metabolism between phototrophs and heterotrophs facilitates carbon sequestration and shapes the functional community, collaboratively determining methylated As production in paddy soils. These findings offer new insights into the influence of trophic interactions within the periphyton on As speciation with potential implications for element cycling and soil remediation in paddy soils.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.