{"title":"光伏电池超越Shockley-Queisser效率极限。","authors":"Zhigang Li, Bingqing Wei","doi":"10.1007/s40820-025-01844-8","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>A record power conversion efficiency of 50%–60% was achieved in Si solar cells by inhibiting the lattice atoms’ thermal oscillations at low temperatures.</p>\n </li>\n <li>\n <p>Enhancing the light penetration depth can effectively mitigate carrier freeze-out and expand the operational temperature range of silicon cells to 10 K.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01844-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Surpassing Shockley–Queisser Efficiency Limit in Photovoltaic Cells\",\"authors\":\"Zhigang Li, Bingqing Wei\",\"doi\":\"10.1007/s40820-025-01844-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n \\n<ul>\\n <li>\\n <p>A record power conversion efficiency of 50%–60% was achieved in Si solar cells by inhibiting the lattice atoms’ thermal oscillations at low temperatures.</p>\\n </li>\\n <li>\\n <p>Enhancing the light penetration depth can effectively mitigate carrier freeze-out and expand the operational temperature range of silicon cells to 10 K.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01844-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01844-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01844-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Surpassing Shockley–Queisser Efficiency Limit in Photovoltaic Cells
Highlights
A record power conversion efficiency of 50%–60% was achieved in Si solar cells by inhibiting the lattice atoms’ thermal oscillations at low temperatures.
Enhancing the light penetration depth can effectively mitigate carrier freeze-out and expand the operational temperature range of silicon cells to 10 K.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.