Cameron R Strachan,Connor M Bowers,Byung-Chul Kim,Tea Movsesijan,Viktoria Neubauer,Anna J Mueller,Xiaoqian A Yu,Fátima C Pereira,Veronika Nagl,Johannes Faas,Martin Wagner,Qendrim Zebeli,Paul J Weimer,Pieter Candry,Martin F Polz,Christopher E Lawson,Evelyne Selberherr
{"title":"不同的乳酸利用策略驱动了瘤胃微生物组中共存的两种巨噬菌物种之间的生态位分化。","authors":"Cameron R Strachan,Connor M Bowers,Byung-Chul Kim,Tea Movsesijan,Viktoria Neubauer,Anna J Mueller,Xiaoqian A Yu,Fátima C Pereira,Veronika Nagl,Johannes Faas,Martin Wagner,Qendrim Zebeli,Paul J Weimer,Pieter Candry,Martin F Polz,Christopher E Lawson,Evelyne Selberherr","doi":"10.1093/ismejo/wraf147","DOIUrl":null,"url":null,"abstract":"Lactate utilization mitigates rumen acidosis and is associated with decreased methane production in the rumen. While several lactate utilization pathways exist across different microbial species in the rumen, how they are metabolically differentiated remains unclear. Here, we show that the key lactate-utilizing species Megasphaera hexanoica and Megasphaera elsdenii display distinct growth strategies based on their fermentative end products. This allows them to co-exist and play distinct metabolic roles, which appear particularly relevant in the early stages of rumen development, as both species are highly enriched in the calf. Specifically, M. hexanoica is more strongly associated with rumen microbiome states that involve increased lactate utilization and preferentially runs reverse beta-oxidation (termed chain elongation) to produce butyrate and medium-chain fatty acids from lactate. As M. elsdenii instead utilizes lactate via the acrylate pathway to produce propionate, we leverage Enzyme Cost Minimization to predict how this pathway relates to a distinct growth strategy. We find that M. elsdenii maximizes growth rate when lactate transiently accumulates, which contrasts M. hexanoica's invariably high-yield strategy. This trade-off, which is supported by the analysis of growth kinetics, metabolic flux, and bioreactors simulating the rumen microbiome, ultimately contributes to co-existence on lactate and may have driven niche differentiation. Lastly, we demonstrate how lactate utilization in the Megasphaera is threatened by toxins widespread in feed, which points to dietary interventions to support calf health.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct lactate utilization strategies drive niche differentiation between two co-existing Megasphaera species in the rumen microbiome.\",\"authors\":\"Cameron R Strachan,Connor M Bowers,Byung-Chul Kim,Tea Movsesijan,Viktoria Neubauer,Anna J Mueller,Xiaoqian A Yu,Fátima C Pereira,Veronika Nagl,Johannes Faas,Martin Wagner,Qendrim Zebeli,Paul J Weimer,Pieter Candry,Martin F Polz,Christopher E Lawson,Evelyne Selberherr\",\"doi\":\"10.1093/ismejo/wraf147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lactate utilization mitigates rumen acidosis and is associated with decreased methane production in the rumen. While several lactate utilization pathways exist across different microbial species in the rumen, how they are metabolically differentiated remains unclear. Here, we show that the key lactate-utilizing species Megasphaera hexanoica and Megasphaera elsdenii display distinct growth strategies based on their fermentative end products. This allows them to co-exist and play distinct metabolic roles, which appear particularly relevant in the early stages of rumen development, as both species are highly enriched in the calf. Specifically, M. hexanoica is more strongly associated with rumen microbiome states that involve increased lactate utilization and preferentially runs reverse beta-oxidation (termed chain elongation) to produce butyrate and medium-chain fatty acids from lactate. As M. elsdenii instead utilizes lactate via the acrylate pathway to produce propionate, we leverage Enzyme Cost Minimization to predict how this pathway relates to a distinct growth strategy. We find that M. elsdenii maximizes growth rate when lactate transiently accumulates, which contrasts M. hexanoica's invariably high-yield strategy. This trade-off, which is supported by the analysis of growth kinetics, metabolic flux, and bioreactors simulating the rumen microbiome, ultimately contributes to co-existence on lactate and may have driven niche differentiation. Lastly, we demonstrate how lactate utilization in the Megasphaera is threatened by toxins widespread in feed, which points to dietary interventions to support calf health.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distinct lactate utilization strategies drive niche differentiation between two co-existing Megasphaera species in the rumen microbiome.
Lactate utilization mitigates rumen acidosis and is associated with decreased methane production in the rumen. While several lactate utilization pathways exist across different microbial species in the rumen, how they are metabolically differentiated remains unclear. Here, we show that the key lactate-utilizing species Megasphaera hexanoica and Megasphaera elsdenii display distinct growth strategies based on their fermentative end products. This allows them to co-exist and play distinct metabolic roles, which appear particularly relevant in the early stages of rumen development, as both species are highly enriched in the calf. Specifically, M. hexanoica is more strongly associated with rumen microbiome states that involve increased lactate utilization and preferentially runs reverse beta-oxidation (termed chain elongation) to produce butyrate and medium-chain fatty acids from lactate. As M. elsdenii instead utilizes lactate via the acrylate pathway to produce propionate, we leverage Enzyme Cost Minimization to predict how this pathway relates to a distinct growth strategy. We find that M. elsdenii maximizes growth rate when lactate transiently accumulates, which contrasts M. hexanoica's invariably high-yield strategy. This trade-off, which is supported by the analysis of growth kinetics, metabolic flux, and bioreactors simulating the rumen microbiome, ultimately contributes to co-existence on lactate and may have driven niche differentiation. Lastly, we demonstrate how lactate utilization in the Megasphaera is threatened by toxins widespread in feed, which points to dietary interventions to support calf health.