利用水库计算的无模式异常波预报

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Abrari Noor Hasmi, Hadi Susanto
{"title":"利用水库计算的无模式异常波预报","authors":"Abrari Noor Hasmi,&nbsp;Hadi Susanto","doi":"10.1016/j.cnsns.2025.109087","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research has demonstrated Reservoir Computing’s capability to model various chaotic dynamical systems, yet its application to Hamiltonian systems remains relatively unexplored. This paper investigates the effectiveness of Reservoir Computing in capturing rogue wave dynamics from the nonlinear Schrödinger equation, a challenging Hamiltonian system with modulation instability. The model-free approach learns from breather simulations with five unstable modes. A properly tuned parallel Echo State Network can predict dynamics from two distinct testing datasets. The first set is a continuation of the training data, whereas the second set involves a higher-order breather. An investigation of the one-step prediction capability shows remarkable agreement between the testing data and the models. Furthermore, we show that the trained reservoir can predict the propagation of rogue waves over a relatively long prediction horizon, despite facing unseen dynamics. Finally, we introduce a method to significantly improve the Reservoir Computing prediction in autonomous mode, enhancing its long-term forecasting ability. These results advance the application of Reservoir Computing to spatio-temporal Hamiltonian systems and highlight the critical importance of phase space coverage in the design of training data.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109087"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-free forecasting of rogue waves using Reservoir Computing\",\"authors\":\"Abrari Noor Hasmi,&nbsp;Hadi Susanto\",\"doi\":\"10.1016/j.cnsns.2025.109087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent research has demonstrated Reservoir Computing’s capability to model various chaotic dynamical systems, yet its application to Hamiltonian systems remains relatively unexplored. This paper investigates the effectiveness of Reservoir Computing in capturing rogue wave dynamics from the nonlinear Schrödinger equation, a challenging Hamiltonian system with modulation instability. The model-free approach learns from breather simulations with five unstable modes. A properly tuned parallel Echo State Network can predict dynamics from two distinct testing datasets. The first set is a continuation of the training data, whereas the second set involves a higher-order breather. An investigation of the one-step prediction capability shows remarkable agreement between the testing data and the models. Furthermore, we show that the trained reservoir can predict the propagation of rogue waves over a relatively long prediction horizon, despite facing unseen dynamics. Finally, we introduce a method to significantly improve the Reservoir Computing prediction in autonomous mode, enhancing its long-term forecasting ability. These results advance the application of Reservoir Computing to spatio-temporal Hamiltonian systems and highlight the critical importance of phase space coverage in the design of training data.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109087\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425004988\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425004988","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,油藏计算有能力模拟各种混沌动力系统,但它在哈密顿系统中的应用仍然相对未被探索。本文研究了油藏计算在从非线性Schrödinger方程(具有调制不稳定性的具有挑战性的哈密顿系统)中捕获异常波动动力学方面的有效性。无模型方法从具有五种不稳定模式的呼吸模拟中学习。一个适当调优的并行回声状态网络可以从两个不同的测试数据集预测动态。第一组是训练数据的延续,而第二组涉及高阶呼吸。对一步预测能力的研究表明,测试数据与模型之间具有显著的一致性。此外,我们表明,经过训练的储层可以在相对较长的预测范围内预测异常波的传播,尽管面临着看不见的动力学。最后,提出了一种能够显著改善自主模式下油藏计算预测的方法,增强了其长期预测能力。这些结果推动了油藏计算在时空哈密顿系统中的应用,并突出了相空间覆盖在训练数据设计中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-free forecasting of rogue waves using Reservoir Computing
Recent research has demonstrated Reservoir Computing’s capability to model various chaotic dynamical systems, yet its application to Hamiltonian systems remains relatively unexplored. This paper investigates the effectiveness of Reservoir Computing in capturing rogue wave dynamics from the nonlinear Schrödinger equation, a challenging Hamiltonian system with modulation instability. The model-free approach learns from breather simulations with five unstable modes. A properly tuned parallel Echo State Network can predict dynamics from two distinct testing datasets. The first set is a continuation of the training data, whereas the second set involves a higher-order breather. An investigation of the one-step prediction capability shows remarkable agreement between the testing data and the models. Furthermore, we show that the trained reservoir can predict the propagation of rogue waves over a relatively long prediction horizon, despite facing unseen dynamics. Finally, we introduce a method to significantly improve the Reservoir Computing prediction in autonomous mode, enhancing its long-term forecasting ability. These results advance the application of Reservoir Computing to spatio-temporal Hamiltonian systems and highlight the critical importance of phase space coverage in the design of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信