大型语言模型的法律知识注入研究

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qian Liu , Hang Yu , Qiqi Wang , Qi Xu , Jinpeng Li , Zhuoqun Zou , Rui Mao , Erik Cambria
{"title":"大型语言模型的法律知识注入研究","authors":"Qian Liu ,&nbsp;Hang Yu ,&nbsp;Qiqi Wang ,&nbsp;Qi Xu ,&nbsp;Jinpeng Li ,&nbsp;Zhuoqun Zou ,&nbsp;Rui Mao ,&nbsp;Erik Cambria","doi":"10.1016/j.inffus.2025.103426","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models (LLMs) have demonstrated impressive capabilities and are increasingly being explored for applications in the legal field. Despite these advancements, LLMs still face challenges in providing reliable legal assistance to legal professionals and laypeople due to the lack of legal knowledge. Under this limitation, recent research has begun to explore the integration of legal knowledge into LLMs to enhance LLMs’ comprehension, analysis, and decision-making abilities. We first explore the different types of legal knowledge that are or can be used by LLMs. Then, we comprehensively review four types of current methods for fusing this knowledge. Next, we discuss the challenges faced by legal LLMs and propose future research directions, highlighting the importance of collaboration between academia and legal practitioners to advance applications in the legal field.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"125 ","pages":"Article 103426"},"PeriodicalIF":15.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Legal knowledge infusion for large language models: A survey\",\"authors\":\"Qian Liu ,&nbsp;Hang Yu ,&nbsp;Qiqi Wang ,&nbsp;Qi Xu ,&nbsp;Jinpeng Li ,&nbsp;Zhuoqun Zou ,&nbsp;Rui Mao ,&nbsp;Erik Cambria\",\"doi\":\"10.1016/j.inffus.2025.103426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large Language Models (LLMs) have demonstrated impressive capabilities and are increasingly being explored for applications in the legal field. Despite these advancements, LLMs still face challenges in providing reliable legal assistance to legal professionals and laypeople due to the lack of legal knowledge. Under this limitation, recent research has begun to explore the integration of legal knowledge into LLMs to enhance LLMs’ comprehension, analysis, and decision-making abilities. We first explore the different types of legal knowledge that are or can be used by LLMs. Then, we comprehensively review four types of current methods for fusing this knowledge. Next, we discuss the challenges faced by legal LLMs and propose future research directions, highlighting the importance of collaboration between academia and legal practitioners to advance applications in the legal field.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"125 \",\"pages\":\"Article 103426\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525004993\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525004993","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)已经展示了令人印象深刻的能力,并且越来越多地被探索用于法律领域的应用。尽管取得了这些进步,但由于缺乏法律知识,llm在向法律专业人士和外行人提供可靠的法律援助方面仍然面临挑战。在这种限制下,最近的研究开始探索将法律知识融入法学硕士,以提高法学硕士的理解、分析和决策能力。我们首先探讨不同类型的法律知识,是或可以由法学硕士使用。然后,我们全面回顾了目前融合这些知识的四种方法。接下来,我们讨论了法学硕士面临的挑战,并提出了未来的研究方向,强调了学术界和法律从业者之间合作的重要性,以推进法律领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Legal knowledge infusion for large language models: A survey
Large Language Models (LLMs) have demonstrated impressive capabilities and are increasingly being explored for applications in the legal field. Despite these advancements, LLMs still face challenges in providing reliable legal assistance to legal professionals and laypeople due to the lack of legal knowledge. Under this limitation, recent research has begun to explore the integration of legal knowledge into LLMs to enhance LLMs’ comprehension, analysis, and decision-making abilities. We first explore the different types of legal knowledge that are or can be used by LLMs. Then, we comprehensively review four types of current methods for fusing this knowledge. Next, we discuss the challenges faced by legal LLMs and propose future research directions, highlighting the importance of collaboration between academia and legal practitioners to advance applications in the legal field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信