Hasnae Choukri, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni, Shiv Kumar
{"title":"高温和热旱复合胁迫下小扁豆种子产量及营养品质性状的变化","authors":"Hasnae Choukri, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni, Shiv Kumar","doi":"10.3390/plants14132019","DOIUrl":null,"url":null,"abstract":"<p><p>Lentil (<i>Lens culinaris</i> Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat stress, and combined heat and drought stresses. Significant effects of genotype, environment, and their interactions were observed on seed yield, seed size, cooking time, and nutritional quality. Heat and drought stresses caused substantial reductions in seed yield (up to 40% under combined stress), protein content, iron, and zinc concentration, and increased phytic acid levels, which negatively impacted iron and zinc bioavailability. Cooking time significantly decreased under stress conditions, with up to 54% reduction under combined heat and drought stresses at Annoceur research station. Correlation analysis revealed complex trade-offs among yield, nutritional quality, and cooking traits under stress conditions. Principal component analysis and GGE biplot analyses identified genotypes with superior yield, micronutrient concentration, and cooking time stability across environments. Genotypes such as G32, G3, and G36 combined high iron and zinc levels; G13 and G30 showed low phytic acid, while G 15 exhibited the shortest cooking time. These genotypes also demonstrated adaptability across the tested environment. This study highlights the potential of selecting climate-resilient, nutrient-dense lentil genotypes to support breeding efforts aimed at improving food security in the face of global climate variability. These genotypes can be suggested as elite climate-resilient parental lines to support breeders in enhancing lentil yield, nutritional quality, and stability under multiple stress conditions.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251599/pdf/","citationCount":"0","resultStr":"{\"title\":\"Variation of Seed Yield and Nutritional Quality Traits of Lentil (<i>Lens culinaris</i> Medikus) Under Heat and Combined Heat and Drought Stresses.\",\"authors\":\"Hasnae Choukri, Khawla Aloui, Noureddine El Haddad, Kamal Hejjaoui, Abdelaziz Smouni, Shiv Kumar\",\"doi\":\"10.3390/plants14132019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lentil (<i>Lens culinaris</i> Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat stress, and combined heat and drought stresses. Significant effects of genotype, environment, and their interactions were observed on seed yield, seed size, cooking time, and nutritional quality. Heat and drought stresses caused substantial reductions in seed yield (up to 40% under combined stress), protein content, iron, and zinc concentration, and increased phytic acid levels, which negatively impacted iron and zinc bioavailability. Cooking time significantly decreased under stress conditions, with up to 54% reduction under combined heat and drought stresses at Annoceur research station. Correlation analysis revealed complex trade-offs among yield, nutritional quality, and cooking traits under stress conditions. Principal component analysis and GGE biplot analyses identified genotypes with superior yield, micronutrient concentration, and cooking time stability across environments. Genotypes such as G32, G3, and G36 combined high iron and zinc levels; G13 and G30 showed low phytic acid, while G 15 exhibited the shortest cooking time. These genotypes also demonstrated adaptability across the tested environment. This study highlights the potential of selecting climate-resilient, nutrient-dense lentil genotypes to support breeding efforts aimed at improving food security in the face of global climate variability. These genotypes can be suggested as elite climate-resilient parental lines to support breeders in enhancing lentil yield, nutritional quality, and stability under multiple stress conditions.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251599/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14132019\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Variation of Seed Yield and Nutritional Quality Traits of Lentil (Lens culinaris Medikus) Under Heat and Combined Heat and Drought Stresses.
Lentil (Lens culinaris Medikus) is a critical food crop offering high protein and essential micronutrients. However, its productivity and nutritional quality are increasingly threatened by climate change. In this study, 36 lentil genotypes were evaluated across two Moroccan locations under normal, heat stress, and combined heat and drought stresses. Significant effects of genotype, environment, and their interactions were observed on seed yield, seed size, cooking time, and nutritional quality. Heat and drought stresses caused substantial reductions in seed yield (up to 40% under combined stress), protein content, iron, and zinc concentration, and increased phytic acid levels, which negatively impacted iron and zinc bioavailability. Cooking time significantly decreased under stress conditions, with up to 54% reduction under combined heat and drought stresses at Annoceur research station. Correlation analysis revealed complex trade-offs among yield, nutritional quality, and cooking traits under stress conditions. Principal component analysis and GGE biplot analyses identified genotypes with superior yield, micronutrient concentration, and cooking time stability across environments. Genotypes such as G32, G3, and G36 combined high iron and zinc levels; G13 and G30 showed low phytic acid, while G 15 exhibited the shortest cooking time. These genotypes also demonstrated adaptability across the tested environment. This study highlights the potential of selecting climate-resilient, nutrient-dense lentil genotypes to support breeding efforts aimed at improving food security in the face of global climate variability. These genotypes can be suggested as elite climate-resilient parental lines to support breeders in enhancing lentil yield, nutritional quality, and stability under multiple stress conditions.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.