{"title":"StomaYOLO:基于多任务训练的轻型玉米气孔细胞表型检测器。","authors":"Ziqi Yang, Yiran Liao, Ziao Chen, Zhenzhen Lin, Wenyuan Huang, Yanxi Liu, Yuling Liu, Yamin Fan, Jie Xu, Lijia Xu, Jiong Mu","doi":"10.3390/plants14132070","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (<i>Zea mays</i> L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252304/pdf/","citationCount":"0","resultStr":"{\"title\":\"StomaYOLO: A Lightweight Maize Phenotypic Stomatal Cell Detector Based on Multi-Task Training.\",\"authors\":\"Ziqi Yang, Yiran Liao, Ziao Chen, Zhenzhen Lin, Wenyuan Huang, Yanxi Liu, Yuling Liu, Yamin Fan, Jie Xu, Lijia Xu, Jiong Mu\",\"doi\":\"10.3390/plants14132070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize (<i>Zea mays</i> L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252304/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14132070\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132070","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
StomaYOLO: A Lightweight Maize Phenotypic Stomatal Cell Detector Based on Multi-Task Training.
Maize (Zea mays L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.