StomaYOLO:基于多任务训练的轻型玉米气孔细胞表型检测器。

IF 4 2区 生物学 Q1 PLANT SCIENCES
Ziqi Yang, Yiran Liao, Ziao Chen, Zhenzhen Lin, Wenyuan Huang, Yanxi Liu, Yuling Liu, Yamin Fan, Jie Xu, Lijia Xu, Jiong Mu
{"title":"StomaYOLO:基于多任务训练的轻型玉米气孔细胞表型检测器。","authors":"Ziqi Yang, Yiran Liao, Ziao Chen, Zhenzhen Lin, Wenyuan Huang, Yanxi Liu, Yuling Liu, Yamin Fan, Jie Xu, Lijia Xu, Jiong Mu","doi":"10.3390/plants14132070","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (<i>Zea mays</i> L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252304/pdf/","citationCount":"0","resultStr":"{\"title\":\"StomaYOLO: A Lightweight Maize Phenotypic Stomatal Cell Detector Based on Multi-Task Training.\",\"authors\":\"Ziqi Yang, Yiran Liao, Ziao Chen, Zhenzhen Lin, Wenyuan Huang, Yanxi Liu, Yuling Liu, Yamin Fan, Jie Xu, Lijia Xu, Jiong Mu\",\"doi\":\"10.3390/plants14132070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize (<i>Zea mays</i> L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252304/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14132070\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132070","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

玉米(Zea mays L.)是全球重要的粮食作物,其气孔结构调节光合作用和应对干旱。传统的手工气孔检测方法效率低,主观,不适合高通量植物表型研究。为了解决这个问题,我们整理了1500多张玉米叶片表皮气孔图像的数据集,并开发了一种新的轻量级检测模型StomaYOLO,该模型针对微观图像中的小气孔目标和细微特征量身定制。利用YOLOv11框架,StomaYOLO集成了动态卷积模块小目标检测层P2,利用大尺度表皮细胞特征,通过辅助训练增强气孔识别。我们的模型在保持计算效率的同时,实现了91.8%的平均精度(mAP)和98.5%的精度,超越了众多主流检测模型。烧蚀和对比分析表明,小目标检测层、动态卷积模块、多任务训练和知识蒸馏策略大大提高了检测性能。与基线模型相比,集成所有四种策略产生了近9%的mAP改进,计算复杂度在8.4 GFLOPS以下。与现有方法相比,我们的研究结果强调了StomaYOLO的卓越检测能力,提供了一种适合实际实施的经济有效的解决方案。该研究为玉米气孔表型分析提供了有价值的工具,支持作物育种和智能农业的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StomaYOLO: A Lightweight Maize Phenotypic Stomatal Cell Detector Based on Multi-Task Training.

Maize (Zea mays L.), a vital global food crop, relies on its stomatal structure for regulating photosynthesis and responding to drought. Conventional manual stomatal detection methods are inefficient, subjective, and inadequate for high-throughput plant phenotyping research. To address this, we curated a dataset of over 1500 maize leaf epidermal stomata images and developed a novel lightweight detection model, StomaYOLO, tailored for small stomatal targets and subtle features in microscopic images. Leveraging the YOLOv11 framework, StomaYOLO integrates the Small Object Detection layer P2, the dynamic convolution module, and exploits large-scale epidermal cell features to enhance stomatal recognition through auxiliary training. Our model achieved a remarkable 91.8% mean average precision (mAP) and 98.5% precision, surpassing numerous mainstream detection models while maintaining computational efficiency. Ablation and comparative analyses demonstrated that the Small Object Detection layer, dynamic convolutional module, multi-task training, and knowledge distillation strategies substantially enhanced detection performance. Integrating all four strategies yielded a nearly 9% mAP improvement over the baseline model, with computational complexity under 8.4 GFLOPS. Our findings underscore the superior detection capabilities of StomaYOLO compared to existing methods, offering a cost-effective solution that is suitable for practical implementation. This study presents a valuable tool for maize stomatal phenotyping, supporting crop breeding and smart agriculture advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信