{"title":"荒漠-绿洲过渡带植物群落功能性状与多样性的土壤驱动耦合","authors":"Zhuopeng Fan, Tingting Xie, Lishan Shan, Hongyong Wang, Jing Ma, Yuanzhi Yue, Meng Yuan, Quangang Li, Cai He, Yonghua Zhao","doi":"10.3390/plants14131997","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationships between diversity and functional traits in plant communities is essential for elucidating ecosystem functions, forecasting community succession, and informing ecological restoration efforts in arid regions. Although the current research on plant functional traits and diversity has improved our ability to predict ecological functions, there are still many problems, such as how environmental changes affect the relationship between species diversity and plant functional traits, and how these interactions affect plant community functions. We examined the relationships among leaf and fine root functional traits, species diversity, and functional diversity at the community level, along with their environmental interpretations, in a plant community within the desert-oasis transition zone of the Hexi Corridor, where habitats are undergoing significant small-scale changes. During dune succession, plant community composition and diversity exhibited significant variation. Plants are adapted to environmental changes through synergistic combinations of above-ground and below-ground traits. Specifically, plants in fixed dunes adopted a \"slow investment\" strategy, while those in semi-fixed and mobile dunes employed a \"fast investment\" approach to resource acquisition. A strong coupling was observed between plant community functional traits and species diversity. Soil phosphorus content and compactness emerged as primary factors influencing differences in plant community functional traits and composition. These soil factors indirectly regulated fine root functional traits and diversity by affecting species diversity, thereby driving community succession. Our study elucidates the \"soil-diversity-community functional trait\" linkage mechanisms in the successional process of desert plants. This research provides scientific support for the restoring and reconstruction of degraded ecosystems in arid zones.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251815/pdf/","citationCount":"0","resultStr":"{\"title\":\"Soil-Driven Coupling of Plant Community Functional Traits and Diversity in Desert-Oasis Transition Zone.\",\"authors\":\"Zhuopeng Fan, Tingting Xie, Lishan Shan, Hongyong Wang, Jing Ma, Yuanzhi Yue, Meng Yuan, Quangang Li, Cai He, Yonghua Zhao\",\"doi\":\"10.3390/plants14131997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the relationships between diversity and functional traits in plant communities is essential for elucidating ecosystem functions, forecasting community succession, and informing ecological restoration efforts in arid regions. Although the current research on plant functional traits and diversity has improved our ability to predict ecological functions, there are still many problems, such as how environmental changes affect the relationship between species diversity and plant functional traits, and how these interactions affect plant community functions. We examined the relationships among leaf and fine root functional traits, species diversity, and functional diversity at the community level, along with their environmental interpretations, in a plant community within the desert-oasis transition zone of the Hexi Corridor, where habitats are undergoing significant small-scale changes. During dune succession, plant community composition and diversity exhibited significant variation. Plants are adapted to environmental changes through synergistic combinations of above-ground and below-ground traits. Specifically, plants in fixed dunes adopted a \\\"slow investment\\\" strategy, while those in semi-fixed and mobile dunes employed a \\\"fast investment\\\" approach to resource acquisition. A strong coupling was observed between plant community functional traits and species diversity. Soil phosphorus content and compactness emerged as primary factors influencing differences in plant community functional traits and composition. These soil factors indirectly regulated fine root functional traits and diversity by affecting species diversity, thereby driving community succession. Our study elucidates the \\\"soil-diversity-community functional trait\\\" linkage mechanisms in the successional process of desert plants. This research provides scientific support for the restoring and reconstruction of degraded ecosystems in arid zones.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251815/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14131997\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14131997","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Soil-Driven Coupling of Plant Community Functional Traits and Diversity in Desert-Oasis Transition Zone.
Understanding the relationships between diversity and functional traits in plant communities is essential for elucidating ecosystem functions, forecasting community succession, and informing ecological restoration efforts in arid regions. Although the current research on plant functional traits and diversity has improved our ability to predict ecological functions, there are still many problems, such as how environmental changes affect the relationship between species diversity and plant functional traits, and how these interactions affect plant community functions. We examined the relationships among leaf and fine root functional traits, species diversity, and functional diversity at the community level, along with their environmental interpretations, in a plant community within the desert-oasis transition zone of the Hexi Corridor, where habitats are undergoing significant small-scale changes. During dune succession, plant community composition and diversity exhibited significant variation. Plants are adapted to environmental changes through synergistic combinations of above-ground and below-ground traits. Specifically, plants in fixed dunes adopted a "slow investment" strategy, while those in semi-fixed and mobile dunes employed a "fast investment" approach to resource acquisition. A strong coupling was observed between plant community functional traits and species diversity. Soil phosphorus content and compactness emerged as primary factors influencing differences in plant community functional traits and composition. These soil factors indirectly regulated fine root functional traits and diversity by affecting species diversity, thereby driving community succession. Our study elucidates the "soil-diversity-community functional trait" linkage mechanisms in the successional process of desert plants. This research provides scientific support for the restoring and reconstruction of degraded ecosystems in arid zones.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.