Yuancong Gu, Bangyu Lv, Xingrui Nian, Xinrui Xie, Xinhe Yang
{"title":"Wurfbainia villosa (Lour.) Škorničk挥发油的优化提取、综合化学分析和抗氧化评价。& a.d.p olsen树叶。","authors":"Yuancong Gu, Bangyu Lv, Xingrui Nian, Xinrui Xie, Xinhe Yang","doi":"10.3390/plants14132041","DOIUrl":null,"url":null,"abstract":"<p><p>This study employed cellulase-assisted hydrodistillation (cellulase-HD) to extract volatile oils from <i>Wurfbainia villosa</i> (Lour.) Škorničk. & A.D.Poulsen <i>(W. villosa)</i> leaves, with process optimization conducted via the response surface methodology (RSM). The optimized extraction parameters were as follows: enzyme dosage 2.2%, enzymatic hydrolysis temperature 49 °C, hydrolysis duration 73 min, and material/liquid ratio (1:10.7 mg/mL). Under these optimal conditions, the volatile oil yield reached 0.772%, representing a 31.29% increase compared to conventional hydrodistillation (HD). GC-MS analysis identified 54 and 49 volatile compounds in cellulase-HD and HD extracts, respectively, with 39 shared components. The cellulase-HD extract was predominantly composed of γ-terpinene (14.981%), limonene (13.352%), β-phellandrene (10.634%), 4-terpineol (10.145%), and α-terpineol (8.085%). In contrast, the HD extract showed higher contents of β-phellandrene (41.881%), followed by β-myrcene (8.656%) and limonene (8.444%). Notably, cellulase pretreatment significantly increased the yield of oxygenated compounds. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed substantial compositional differences between the two extraction methods, with key differential components including fenchol, borneol, and γ-elemene. Antioxidant activity assessment demonstrated superior free radical scavenging capacity in cellulase-HD extracts. Structure-activity relationship analysis identified seven compounds with DPPH radical scavenging rates >50%, particularly, epi-bicyclosesquiphellandrene (71.51%) and γ-elemene (78.91%). Furthermore, thirteen components, including isopinocamphone (66.58%) and α-terpineol (66.95%), exhibited ABTS radical scavenging rates above 50%. This study provides theoretical and technical foundations for the extraction and functional development of volatile oils from <i>W. villosa</i> leaves.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimized Extraction, Comprehensive Chemical Profiling, and Antioxidant Evaluation of Volatile Oils from <i>Wurfbainia villosa</i> (Lour.) Škorničk. & A.D.Poulsen Leaves.\",\"authors\":\"Yuancong Gu, Bangyu Lv, Xingrui Nian, Xinrui Xie, Xinhe Yang\",\"doi\":\"10.3390/plants14132041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study employed cellulase-assisted hydrodistillation (cellulase-HD) to extract volatile oils from <i>Wurfbainia villosa</i> (Lour.) Škorničk. & A.D.Poulsen <i>(W. villosa)</i> leaves, with process optimization conducted via the response surface methodology (RSM). The optimized extraction parameters were as follows: enzyme dosage 2.2%, enzymatic hydrolysis temperature 49 °C, hydrolysis duration 73 min, and material/liquid ratio (1:10.7 mg/mL). Under these optimal conditions, the volatile oil yield reached 0.772%, representing a 31.29% increase compared to conventional hydrodistillation (HD). GC-MS analysis identified 54 and 49 volatile compounds in cellulase-HD and HD extracts, respectively, with 39 shared components. The cellulase-HD extract was predominantly composed of γ-terpinene (14.981%), limonene (13.352%), β-phellandrene (10.634%), 4-terpineol (10.145%), and α-terpineol (8.085%). In contrast, the HD extract showed higher contents of β-phellandrene (41.881%), followed by β-myrcene (8.656%) and limonene (8.444%). Notably, cellulase pretreatment significantly increased the yield of oxygenated compounds. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed substantial compositional differences between the two extraction methods, with key differential components including fenchol, borneol, and γ-elemene. Antioxidant activity assessment demonstrated superior free radical scavenging capacity in cellulase-HD extracts. Structure-activity relationship analysis identified seven compounds with DPPH radical scavenging rates >50%, particularly, epi-bicyclosesquiphellandrene (71.51%) and γ-elemene (78.91%). Furthermore, thirteen components, including isopinocamphone (66.58%) and α-terpineol (66.95%), exhibited ABTS radical scavenging rates above 50%. This study provides theoretical and technical foundations for the extraction and functional development of volatile oils from <i>W. villosa</i> leaves.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14132041\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Optimized Extraction, Comprehensive Chemical Profiling, and Antioxidant Evaluation of Volatile Oils from Wurfbainia villosa (Lour.) Škorničk. & A.D.Poulsen Leaves.
This study employed cellulase-assisted hydrodistillation (cellulase-HD) to extract volatile oils from Wurfbainia villosa (Lour.) Škorničk. & A.D.Poulsen (W. villosa) leaves, with process optimization conducted via the response surface methodology (RSM). The optimized extraction parameters were as follows: enzyme dosage 2.2%, enzymatic hydrolysis temperature 49 °C, hydrolysis duration 73 min, and material/liquid ratio (1:10.7 mg/mL). Under these optimal conditions, the volatile oil yield reached 0.772%, representing a 31.29% increase compared to conventional hydrodistillation (HD). GC-MS analysis identified 54 and 49 volatile compounds in cellulase-HD and HD extracts, respectively, with 39 shared components. The cellulase-HD extract was predominantly composed of γ-terpinene (14.981%), limonene (13.352%), β-phellandrene (10.634%), 4-terpineol (10.145%), and α-terpineol (8.085%). In contrast, the HD extract showed higher contents of β-phellandrene (41.881%), followed by β-myrcene (8.656%) and limonene (8.444%). Notably, cellulase pretreatment significantly increased the yield of oxygenated compounds. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed substantial compositional differences between the two extraction methods, with key differential components including fenchol, borneol, and γ-elemene. Antioxidant activity assessment demonstrated superior free radical scavenging capacity in cellulase-HD extracts. Structure-activity relationship analysis identified seven compounds with DPPH radical scavenging rates >50%, particularly, epi-bicyclosesquiphellandrene (71.51%) and γ-elemene (78.91%). Furthermore, thirteen components, including isopinocamphone (66.58%) and α-terpineol (66.95%), exhibited ABTS radical scavenging rates above 50%. This study provides theoretical and technical foundations for the extraction and functional development of volatile oils from W. villosa leaves.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.