Yanzuo Liu, Bo Hu, Aitong Yu, Yuxi Liu, Pengfei Xu, Yang Wang, Junjie Ding, Shuzhen Zhang, Wen-Xia Li, Hailong Ning
{"title":"结合连锁和GWAS的大豆7小种qtl /QTNs精细定位及相关基因挖掘","authors":"Yanzuo Liu, Bo Hu, Aitong Yu, Yuxi Liu, Pengfei Xu, Yang Wang, Junjie Ding, Shuzhen Zhang, Wen-Xia Li, Hailong Ning","doi":"10.3390/plants14131988","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean frogeye leaf spot (FLS) disease has been reported globally and is caused by the fungus <i>Cercospora sojina</i>, which affects the growth, seed yield, and quality of soybean. Among the 15 physiological microspecies of <i>C. sojina</i> soybean in China, Race 7 is one of the main pathogenic microspecies. A few genes are involved in resistance to FLS, and they cannot meet the need to design molecular breeding methods for disease resistance. In this study, a soybean recombinant inbred line (RIL3613) population and a germplasm resource (GP) population were planted at two sites, Acheng (AC) and Xiangyang (XY). Phenotypic data on the percentage of leaf area diseased (PLAD) in soybean leaves were obtained via image recognition technology after the inoculation of seven physiological species and full onset at the R3 stage. Quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) were mapped via linkage analysis and genome-wide association studies (GWASs), respectively. The resistance genes of FLS were subsequently predicted in the linkage disequilibrium region of the collocated QTN. We identified 114 QTLs and 18 QTNs in the RIL3613 and GP populations, respectively. A total of 14 QTN loci were colocalized in the two populations, six of which presented high phenotypic contributions. Through haplotype-phenotype association analysis and expression quantification, three genes (Glyma.06G300100, Glyma.06G300600, and Glyma.13G172300) located near molecular markers AX-90524088 and AX-90437152 (QTNs) are associated with FLS Chinese Race 7, identifying them as potential candidate resistance genes. These results provide a theoretical basis for the genetic mining of soybean antigray spot No. 7 physiological species. These findings also provide a theoretical basis for understanding the genetic mechanism underlying FLS resistance in soybeans.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251640/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fine Mapping of QTLs/QTNs and Mining of Genes Associated with Race 7 of the Soybean <i>Cercospora sojina</i> by Combining Linkages and GWAS.\",\"authors\":\"Yanzuo Liu, Bo Hu, Aitong Yu, Yuxi Liu, Pengfei Xu, Yang Wang, Junjie Ding, Shuzhen Zhang, Wen-Xia Li, Hailong Ning\",\"doi\":\"10.3390/plants14131988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soybean frogeye leaf spot (FLS) disease has been reported globally and is caused by the fungus <i>Cercospora sojina</i>, which affects the growth, seed yield, and quality of soybean. Among the 15 physiological microspecies of <i>C. sojina</i> soybean in China, Race 7 is one of the main pathogenic microspecies. A few genes are involved in resistance to FLS, and they cannot meet the need to design molecular breeding methods for disease resistance. In this study, a soybean recombinant inbred line (RIL3613) population and a germplasm resource (GP) population were planted at two sites, Acheng (AC) and Xiangyang (XY). Phenotypic data on the percentage of leaf area diseased (PLAD) in soybean leaves were obtained via image recognition technology after the inoculation of seven physiological species and full onset at the R3 stage. Quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) were mapped via linkage analysis and genome-wide association studies (GWASs), respectively. The resistance genes of FLS were subsequently predicted in the linkage disequilibrium region of the collocated QTN. We identified 114 QTLs and 18 QTNs in the RIL3613 and GP populations, respectively. A total of 14 QTN loci were colocalized in the two populations, six of which presented high phenotypic contributions. Through haplotype-phenotype association analysis and expression quantification, three genes (Glyma.06G300100, Glyma.06G300600, and Glyma.13G172300) located near molecular markers AX-90524088 and AX-90437152 (QTNs) are associated with FLS Chinese Race 7, identifying them as potential candidate resistance genes. These results provide a theoretical basis for the genetic mining of soybean antigray spot No. 7 physiological species. These findings also provide a theoretical basis for understanding the genetic mechanism underlying FLS resistance in soybeans.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251640/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14131988\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14131988","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Fine Mapping of QTLs/QTNs and Mining of Genes Associated with Race 7 of the Soybean Cercospora sojina by Combining Linkages and GWAS.
Soybean frogeye leaf spot (FLS) disease has been reported globally and is caused by the fungus Cercospora sojina, which affects the growth, seed yield, and quality of soybean. Among the 15 physiological microspecies of C. sojina soybean in China, Race 7 is one of the main pathogenic microspecies. A few genes are involved in resistance to FLS, and they cannot meet the need to design molecular breeding methods for disease resistance. In this study, a soybean recombinant inbred line (RIL3613) population and a germplasm resource (GP) population were planted at two sites, Acheng (AC) and Xiangyang (XY). Phenotypic data on the percentage of leaf area diseased (PLAD) in soybean leaves were obtained via image recognition technology after the inoculation of seven physiological species and full onset at the R3 stage. Quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) were mapped via linkage analysis and genome-wide association studies (GWASs), respectively. The resistance genes of FLS were subsequently predicted in the linkage disequilibrium region of the collocated QTN. We identified 114 QTLs and 18 QTNs in the RIL3613 and GP populations, respectively. A total of 14 QTN loci were colocalized in the two populations, six of which presented high phenotypic contributions. Through haplotype-phenotype association analysis and expression quantification, three genes (Glyma.06G300100, Glyma.06G300600, and Glyma.13G172300) located near molecular markers AX-90524088 and AX-90437152 (QTNs) are associated with FLS Chinese Race 7, identifying them as potential candidate resistance genes. These results provide a theoretical basis for the genetic mining of soybean antigray spot No. 7 physiological species. These findings also provide a theoretical basis for understanding the genetic mechanism underlying FLS resistance in soybeans.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.