栽培方式对柠檬农田土壤原生生物群落的影响及其与产品质量的关系

IF 4 2区 生物学 Q1 PLANT SCIENCES
Haoqiang Liu, Hongjun Li, Zhuchun Peng, Sichen Li, Chun Ran
{"title":"栽培方式对柠檬农田土壤原生生物群落的影响及其与产品质量的关系","authors":"Haoqiang Liu, Hongjun Li, Zhuchun Peng, Sichen Li, Chun Ran","doi":"10.3390/plants14132024","DOIUrl":null,"url":null,"abstract":"<p><p>Citrus is one of the most widely consumed fruits in the world, and its cultivation industry continues to develop rapidly. However, the roles of soil protistan communities during citrus growth are not yet fully understood, despite the potential significance of these communities to the health and quality of citrus. In this study, we examined the soil properties and protistan communities in Eureka lemon farmlands located in Chongqing, China, during the flowering and fruiting stages of cultivation, both in greenhouse and open-field settings. In general, the majority of the measured soil properties (including nutrients and enzyme activities) exhibited higher values in open-field farmlands in comparison to those observed in greenhouse counterparts. According to the results of high-throughput sequencing based on the V9 region of eukaryotic 18S rRNA gene, the diversity of soil protistan communities was also higher in open-field farmlands, and both lemon growth stage and cultivation modes showed significant effects on soil protistan compositions. The transition from traditional agricultural practices to greenhouse farming resulted in a significant transformation of the soil protistan community. This transformation manifested as a shift towards a state characterized by diminished nutrient cycling capabilities. This decline was evidenced by an increase in phototrophs (Archaeplastida) and a concomitant decrease in consumers (Stramenopiles and Alveolata). Community assembly analysis revealed deterministic processes that controlled the succession of soil protistan communities in lemon farmlands. It has been established that environmental associations have the capacity to recognize nitrogen in soils, thereby providing a deterministic selection process for protistan community assembly. Furthermore, a production index was calculated based on 12 quality parameters of lemons, and the results indicated that lemons from greenhouse farms exhibited a lower quality compared to those from open fields. The structure equation model revealed a direct correlation between the quality of lemons and the cultivation methods employed, as well as the composition of soil protists. The present study offers insights into the mechanisms underlying the correlations between the soil protistan community and lemon quality in response to changes in the cultivation modes.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252243/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Cultivation Modes on Soil Protistan Communities and Its Associations with Production Quality in Lemon Farmlands.\",\"authors\":\"Haoqiang Liu, Hongjun Li, Zhuchun Peng, Sichen Li, Chun Ran\",\"doi\":\"10.3390/plants14132024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Citrus is one of the most widely consumed fruits in the world, and its cultivation industry continues to develop rapidly. However, the roles of soil protistan communities during citrus growth are not yet fully understood, despite the potential significance of these communities to the health and quality of citrus. In this study, we examined the soil properties and protistan communities in Eureka lemon farmlands located in Chongqing, China, during the flowering and fruiting stages of cultivation, both in greenhouse and open-field settings. In general, the majority of the measured soil properties (including nutrients and enzyme activities) exhibited higher values in open-field farmlands in comparison to those observed in greenhouse counterparts. According to the results of high-throughput sequencing based on the V9 region of eukaryotic 18S rRNA gene, the diversity of soil protistan communities was also higher in open-field farmlands, and both lemon growth stage and cultivation modes showed significant effects on soil protistan compositions. The transition from traditional agricultural practices to greenhouse farming resulted in a significant transformation of the soil protistan community. This transformation manifested as a shift towards a state characterized by diminished nutrient cycling capabilities. This decline was evidenced by an increase in phototrophs (Archaeplastida) and a concomitant decrease in consumers (Stramenopiles and Alveolata). Community assembly analysis revealed deterministic processes that controlled the succession of soil protistan communities in lemon farmlands. It has been established that environmental associations have the capacity to recognize nitrogen in soils, thereby providing a deterministic selection process for protistan community assembly. Furthermore, a production index was calculated based on 12 quality parameters of lemons, and the results indicated that lemons from greenhouse farms exhibited a lower quality compared to those from open fields. The structure equation model revealed a direct correlation between the quality of lemons and the cultivation methods employed, as well as the composition of soil protists. The present study offers insights into the mechanisms underlying the correlations between the soil protistan community and lemon quality in response to changes in the cultivation modes.</p>\",\"PeriodicalId\":56267,\"journal\":{\"name\":\"Plants-Basel\",\"volume\":\"14 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252243/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/plants14132024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14132024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

柑橘是世界上消费最广泛的水果之一,其种植业持续快速发展。然而,土壤原生生物群落在柑橘生长过程中的作用尚未完全了解,尽管这些群落对柑橘的健康和品质具有潜在的意义。在本研究中,我们研究了位于中国重庆的尤里卡柠檬农田在开花和结实阶段的土壤特性和原生生物群落,包括温室和露天环境。总的来说,与在温室中观察到的相比,在露天农田中测量的大多数土壤特性(包括养分和酶活性)显示出更高的值。基于真核18S rRNA基因V9区的高通量测序结果显示,露天农田土壤原生生物群落多样性也较高,柠檬生育期和栽培方式对土壤原生生物组成均有显著影响。从传统农业实践到温室农业的转变导致了土壤原生生物群落的重大转变。这种转变表现为向一种以减少养分循环能力为特征的状态的转变。这种下降是由光养菌(古塑菌)的增加和伴随的消费者(层菌和肺泡菌)的减少所证明的。群落组装分析揭示了控制柠檬农田土壤原生生物群落演替的确定性过程。环境关联具有识别土壤中氮的能力,从而为原生生物群落聚集提供了一个确定性的选择过程。根据柠檬的12个品质参数计算了柠檬的生产指数,结果表明,大棚柠檬的品质低于露天柠檬。结构方程模型揭示了柠檬品质与栽培方式和土壤原生生物组成之间的直接关系。本研究揭示了不同栽培方式下土壤原生生物群落与柠檬品质相关性的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Cultivation Modes on Soil Protistan Communities and Its Associations with Production Quality in Lemon Farmlands.

Citrus is one of the most widely consumed fruits in the world, and its cultivation industry continues to develop rapidly. However, the roles of soil protistan communities during citrus growth are not yet fully understood, despite the potential significance of these communities to the health and quality of citrus. In this study, we examined the soil properties and protistan communities in Eureka lemon farmlands located in Chongqing, China, during the flowering and fruiting stages of cultivation, both in greenhouse and open-field settings. In general, the majority of the measured soil properties (including nutrients and enzyme activities) exhibited higher values in open-field farmlands in comparison to those observed in greenhouse counterparts. According to the results of high-throughput sequencing based on the V9 region of eukaryotic 18S rRNA gene, the diversity of soil protistan communities was also higher in open-field farmlands, and both lemon growth stage and cultivation modes showed significant effects on soil protistan compositions. The transition from traditional agricultural practices to greenhouse farming resulted in a significant transformation of the soil protistan community. This transformation manifested as a shift towards a state characterized by diminished nutrient cycling capabilities. This decline was evidenced by an increase in phototrophs (Archaeplastida) and a concomitant decrease in consumers (Stramenopiles and Alveolata). Community assembly analysis revealed deterministic processes that controlled the succession of soil protistan communities in lemon farmlands. It has been established that environmental associations have the capacity to recognize nitrogen in soils, thereby providing a deterministic selection process for protistan community assembly. Furthermore, a production index was calculated based on 12 quality parameters of lemons, and the results indicated that lemons from greenhouse farms exhibited a lower quality compared to those from open fields. The structure equation model revealed a direct correlation between the quality of lemons and the cultivation methods employed, as well as the composition of soil protists. The present study offers insights into the mechanisms underlying the correlations between the soil protistan community and lemon quality in response to changes in the cultivation modes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信