Gabriel J Pascal, Sadie Kim, Christopher Xie, Dipon Mondal, Renato V Iozzo
{"title":"蛋白聚糖是自噬、淋巴管生成和神经退行性疾病的主角。","authors":"Gabriel J Pascal, Sadie Kim, Christopher Xie, Dipon Mondal, Renato V Iozzo","doi":"10.1016/j.tcb.2025.06.002","DOIUrl":null,"url":null,"abstract":"<p><p>Proteoglycans (PGs) are specialized cell-surface and secreted proteins teeming with bioactivity. They have been the subject of fascinating research on autophagy, lymphangiogenesis, and neurodegenerative diseases. PG influence on autophagy extends to several disease domains, and their ability to alter autophagic processes has highlighted their suitability as therapeutic targets. PGs also display new functions by evoking protracted autophagy in lymphatic endothelial cells and inhibiting tumor and physiological lymphangiogenesis. The variable degree of PG sulfation and their ability to regulate growth-factor activities in the central nervous system has opened doors into novel therapeutic avenues including Alzheimer's and Parkinson's diseases. This review systematically integrates these diverse qualities of PGs while highlighting future directions towards clinical application.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":18.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteoglycans are protagonists in autophagy, lymphangiogenesis, and neurodegenerative diseases.\",\"authors\":\"Gabriel J Pascal, Sadie Kim, Christopher Xie, Dipon Mondal, Renato V Iozzo\",\"doi\":\"10.1016/j.tcb.2025.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteoglycans (PGs) are specialized cell-surface and secreted proteins teeming with bioactivity. They have been the subject of fascinating research on autophagy, lymphangiogenesis, and neurodegenerative diseases. PG influence on autophagy extends to several disease domains, and their ability to alter autophagic processes has highlighted their suitability as therapeutic targets. PGs also display new functions by evoking protracted autophagy in lymphatic endothelial cells and inhibiting tumor and physiological lymphangiogenesis. The variable degree of PG sulfation and their ability to regulate growth-factor activities in the central nervous system has opened doors into novel therapeutic avenues including Alzheimer's and Parkinson's diseases. This review systematically integrates these diverse qualities of PGs while highlighting future directions towards clinical application.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2025.06.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2025.06.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Proteoglycans are protagonists in autophagy, lymphangiogenesis, and neurodegenerative diseases.
Proteoglycans (PGs) are specialized cell-surface and secreted proteins teeming with bioactivity. They have been the subject of fascinating research on autophagy, lymphangiogenesis, and neurodegenerative diseases. PG influence on autophagy extends to several disease domains, and their ability to alter autophagic processes has highlighted their suitability as therapeutic targets. PGs also display new functions by evoking protracted autophagy in lymphatic endothelial cells and inhibiting tumor and physiological lymphangiogenesis. The variable degree of PG sulfation and their ability to regulate growth-factor activities in the central nervous system has opened doors into novel therapeutic avenues including Alzheimer's and Parkinson's diseases. This review systematically integrates these diverse qualities of PGs while highlighting future directions towards clinical application.
期刊介绍:
Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.