{"title":"拓展CRISPR在基因组编辑之外的应用领域。","authors":"Yu Liang, Shengkun Tong, Jingyu Zhang, Gao-Yi Tan, Lixin Zhang, Sang Yup Lee, Yaojun Tong","doi":"10.1016/j.tig.2025.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR) technologies have rapidly evolved beyond genome editing, transforming fields such as molecular diagnostics, biosensing, transcriptional regulation, molecular imaging, protein interaction mapping, and single-cell analysis. Emerging CRISPR-based diagnostics harness the collateral cleavage activity of CRISPR-associated (Cas) enzymes for rapid nucleic acid detection. Advanced biosensors extend CRISPR's capabilities to detect ions, metabolites, and proteins by integrating synthetic biology components. Catalytically inactive Cas proteins enable precise gene regulation and live-cell imaging of nucleic acids, whereas CRISPR-guided proximity labeling has revolutionized the mapping of biomolecular interactions. Recent single-cell CRISPR screens provide unprecedented resolution of cellular heterogeneity. Future research will focus on overcoming current limitations. The integration of CRISPR technologies with artificial intelligence (AI), spatial omics, and microfluidics is expected to further amplify their impact.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding horizons of CRISPR applications beyond genome editing.\",\"authors\":\"Yu Liang, Shengkun Tong, Jingyu Zhang, Gao-Yi Tan, Lixin Zhang, Sang Yup Lee, Yaojun Tong\",\"doi\":\"10.1016/j.tig.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered regularly interspaced short palindromic repeats (CRISPR) technologies have rapidly evolved beyond genome editing, transforming fields such as molecular diagnostics, biosensing, transcriptional regulation, molecular imaging, protein interaction mapping, and single-cell analysis. Emerging CRISPR-based diagnostics harness the collateral cleavage activity of CRISPR-associated (Cas) enzymes for rapid nucleic acid detection. Advanced biosensors extend CRISPR's capabilities to detect ions, metabolites, and proteins by integrating synthetic biology components. Catalytically inactive Cas proteins enable precise gene regulation and live-cell imaging of nucleic acids, whereas CRISPR-guided proximity labeling has revolutionized the mapping of biomolecular interactions. Recent single-cell CRISPR screens provide unprecedented resolution of cellular heterogeneity. Future research will focus on overcoming current limitations. The integration of CRISPR technologies with artificial intelligence (AI), spatial omics, and microfluidics is expected to further amplify their impact.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.06.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.06.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Expanding horizons of CRISPR applications beyond genome editing.
Clustered regularly interspaced short palindromic repeats (CRISPR) technologies have rapidly evolved beyond genome editing, transforming fields such as molecular diagnostics, biosensing, transcriptional regulation, molecular imaging, protein interaction mapping, and single-cell analysis. Emerging CRISPR-based diagnostics harness the collateral cleavage activity of CRISPR-associated (Cas) enzymes for rapid nucleic acid detection. Advanced biosensors extend CRISPR's capabilities to detect ions, metabolites, and proteins by integrating synthetic biology components. Catalytically inactive Cas proteins enable precise gene regulation and live-cell imaging of nucleic acids, whereas CRISPR-guided proximity labeling has revolutionized the mapping of biomolecular interactions. Recent single-cell CRISPR screens provide unprecedented resolution of cellular heterogeneity. Future research will focus on overcoming current limitations. The integration of CRISPR technologies with artificial intelligence (AI), spatial omics, and microfluidics is expected to further amplify their impact.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.