Katherine Ilah Rees, Jason M Blank, Skye Taylor Foucrier, Lauren Grace Hinrichs, Ryan Singh-Nabi Sekhon
{"title":"丁香酚麻醉与青蛙神经肌肉课堂生理实验的相容性。","authors":"Katherine Ilah Rees, Jason M Blank, Skye Taylor Foucrier, Lauren Grace Hinrichs, Ryan Singh-Nabi Sekhon","doi":"10.1152/advan.00094.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Frogs serve as valuable model organisms for studying physiological responses of nerve, skeletal muscle, and the heart in undergraduate biology labs. Induced hypothermia prior to pithing is the traditional method of euthanasia, but some veterinary guidelines discourage this practice and recommend chemical anesthesia instead. However, the most commonly used anesthetic, MS-222, may negatively interfere with physiology experiments. We sought an alternative anesthetic and tested the hypothesis that eugenol anesthesia is compatible with classroom nerve and muscle experiments on frogs. Bullfrogs were euthanized after eugenol anesthesia or chilling. Additional groups of frogs were soaked in eugenol for extended durations of 30, 60, or 90 minutes beyond reflex loss. The sciatic nerve was stimulated while gastrocnemius force was measured using an isometric force transducer. The threshold voltage eliciting a muscle contraction and the peak isometric twitch force were recorded at 15-minute intervals for 2 hours. Eugenol reliably induced loss of reflexes in approximately 20 to 35 minutes. While eugenol increased the threshold voltage required for a muscle contraction and decreased force production, neuromuscular preparations maintained the ability to respond adequately to electrical stimulation, supporting eugenol's viability as an alternative anesthetic for classroom experiments. To further characterize the anesthetic's effects, isolated sciatic nerves were soaked in eugenol solutions and evaluated for compound action potential amplitude and action potential threshold voltage. Eugenol reduced maximum compound action potential amplitude and increased the action potential threshold voltage, with inhibitory effects dependent on the duration of exposure and reversible upon soaking in Ringer's solution.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compatibility of eugenol anesthesia with classroom physiology experiments on nerve and muscle of frogs.\",\"authors\":\"Katherine Ilah Rees, Jason M Blank, Skye Taylor Foucrier, Lauren Grace Hinrichs, Ryan Singh-Nabi Sekhon\",\"doi\":\"10.1152/advan.00094.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Frogs serve as valuable model organisms for studying physiological responses of nerve, skeletal muscle, and the heart in undergraduate biology labs. Induced hypothermia prior to pithing is the traditional method of euthanasia, but some veterinary guidelines discourage this practice and recommend chemical anesthesia instead. However, the most commonly used anesthetic, MS-222, may negatively interfere with physiology experiments. We sought an alternative anesthetic and tested the hypothesis that eugenol anesthesia is compatible with classroom nerve and muscle experiments on frogs. Bullfrogs were euthanized after eugenol anesthesia or chilling. Additional groups of frogs were soaked in eugenol for extended durations of 30, 60, or 90 minutes beyond reflex loss. The sciatic nerve was stimulated while gastrocnemius force was measured using an isometric force transducer. The threshold voltage eliciting a muscle contraction and the peak isometric twitch force were recorded at 15-minute intervals for 2 hours. Eugenol reliably induced loss of reflexes in approximately 20 to 35 minutes. While eugenol increased the threshold voltage required for a muscle contraction and decreased force production, neuromuscular preparations maintained the ability to respond adequately to electrical stimulation, supporting eugenol's viability as an alternative anesthetic for classroom experiments. To further characterize the anesthetic's effects, isolated sciatic nerves were soaked in eugenol solutions and evaluated for compound action potential amplitude and action potential threshold voltage. Eugenol reduced maximum compound action potential amplitude and increased the action potential threshold voltage, with inhibitory effects dependent on the duration of exposure and reversible upon soaking in Ringer's solution.</p>\",\"PeriodicalId\":50852,\"journal\":{\"name\":\"Advances in Physiology Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physiology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1152/advan.00094.2025\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00094.2025","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Compatibility of eugenol anesthesia with classroom physiology experiments on nerve and muscle of frogs.
Frogs serve as valuable model organisms for studying physiological responses of nerve, skeletal muscle, and the heart in undergraduate biology labs. Induced hypothermia prior to pithing is the traditional method of euthanasia, but some veterinary guidelines discourage this practice and recommend chemical anesthesia instead. However, the most commonly used anesthetic, MS-222, may negatively interfere with physiology experiments. We sought an alternative anesthetic and tested the hypothesis that eugenol anesthesia is compatible with classroom nerve and muscle experiments on frogs. Bullfrogs were euthanized after eugenol anesthesia or chilling. Additional groups of frogs were soaked in eugenol for extended durations of 30, 60, or 90 minutes beyond reflex loss. The sciatic nerve was stimulated while gastrocnemius force was measured using an isometric force transducer. The threshold voltage eliciting a muscle contraction and the peak isometric twitch force were recorded at 15-minute intervals for 2 hours. Eugenol reliably induced loss of reflexes in approximately 20 to 35 minutes. While eugenol increased the threshold voltage required for a muscle contraction and decreased force production, neuromuscular preparations maintained the ability to respond adequately to electrical stimulation, supporting eugenol's viability as an alternative anesthetic for classroom experiments. To further characterize the anesthetic's effects, isolated sciatic nerves were soaked in eugenol solutions and evaluated for compound action potential amplitude and action potential threshold voltage. Eugenol reduced maximum compound action potential amplitude and increased the action potential threshold voltage, with inhibitory effects dependent on the duration of exposure and reversible upon soaking in Ringer's solution.
期刊介绍:
Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.