{"title":"序贯多任务随机试验中间隔截尾生存数据分析。","authors":"Zhiguo Li","doi":"10.1007/s10985-025-09665-y","DOIUrl":null,"url":null,"abstract":"<p><p>Data analysis methods have been well developed for analyzing data to make inferences about adaptive treatment strategies in sequential multiple assignment randomized trials (SMART), when data are continuous or right-censored. However, in some clinical studies, time-to-event outcomes are interval censored, meaning that, for example, the time of interest is only observed between two random visit times to the clinic, which is common in some areas such as psychology studies. In this case, the appropriate analysis methods in SMART studies have not been considered in the literature. This article tries to fill this gap by developing methods for this purpose. Based on a proportional hazards model, we propose to use a weighted spline-based sieve maximum likelihood method to make inference about the group differences using a Wald test. Asymptotic properties of the estimator for the hazard ratio are derived, and variance estimation is considered. We conduct a simulation to assess its finite sample performance, and then analyze data from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of interval censored survival data in sequential multiple assignment randomized trials.\",\"authors\":\"Zhiguo Li\",\"doi\":\"10.1007/s10985-025-09665-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data analysis methods have been well developed for analyzing data to make inferences about adaptive treatment strategies in sequential multiple assignment randomized trials (SMART), when data are continuous or right-censored. However, in some clinical studies, time-to-event outcomes are interval censored, meaning that, for example, the time of interest is only observed between two random visit times to the clinic, which is common in some areas such as psychology studies. In this case, the appropriate analysis methods in SMART studies have not been considered in the literature. This article tries to fill this gap by developing methods for this purpose. Based on a proportional hazards model, we propose to use a weighted spline-based sieve maximum likelihood method to make inference about the group differences using a Wald test. Asymptotic properties of the estimator for the hazard ratio are derived, and variance estimation is considered. We conduct a simulation to assess its finite sample performance, and then analyze data from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-025-09665-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09665-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
数据分析方法已经发展得很好,当数据是连续的或右删节的,用于分析数据以推断顺序多任务随机试验(SMART)中的自适应治疗策略。然而,在一些临床研究中,时间到事件的结果是间隔审查的,这意味着,例如,感兴趣的时间只在两次随机就诊时间之间观察到,这在心理学研究等某些领域很常见。在这种情况下,文献中没有考虑SMART研究中适当的分析方法。本文试图通过开发用于此目的的方法来填补这一空白。基于比例风险模型,我们建议使用加权样条筛选最大似然方法来推断使用Wald检验的组差异。导出了风险比估计量的渐近性质,并考虑了方差估计。我们进行模拟以评估其有限样本性能,然后分析来自Sequenced Treatment Alternatives to ease Depression (STAR*D)试验的数据。
Analysis of interval censored survival data in sequential multiple assignment randomized trials.
Data analysis methods have been well developed for analyzing data to make inferences about adaptive treatment strategies in sequential multiple assignment randomized trials (SMART), when data are continuous or right-censored. However, in some clinical studies, time-to-event outcomes are interval censored, meaning that, for example, the time of interest is only observed between two random visit times to the clinic, which is common in some areas such as psychology studies. In this case, the appropriate analysis methods in SMART studies have not been considered in the literature. This article tries to fill this gap by developing methods for this purpose. Based on a proportional hazards model, we propose to use a weighted spline-based sieve maximum likelihood method to make inference about the group differences using a Wald test. Asymptotic properties of the estimator for the hazard ratio are derived, and variance estimation is considered. We conduct a simulation to assess its finite sample performance, and then analyze data from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.