{"title":"SNX10通过促进病毒进入和抑制病毒引发的自噬来增强HCoV-OC43感染。","authors":"Haobin Li, Huiyi Guo, Binhao Rong, Haowei Li, Wenjiao Wu, Chan Yang, Shuwen Liu","doi":"10.1016/j.virs.2025.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing coronavirus epidemic, including the novel coronavirus (COVID-19), continues to pose a significant threat to global public health. Host targets address multiple stages of the viral life cycle and provide diverse opportunities for therapeutic interventions. This study identified sorting nexin 10 (SNX10) as a facilitator of replication of human coronavirus OC43 (HCoV-OC43), underscoring its potential as a novel antiviral target. The knockout of SNX10 significantly suppressed HCoV-OC43 replication both in vivo and in vitro. Immunoprecipitation-mass spectrometry (IP-MS) analysis identified the adaptor protein complex 2 subunit μ1 (AP2M1) as a direct interactor of SNX10. Specifically, SNX10 facilitates phosphorylation of the AP2M1, thereby enhancing clathrin-mediated viral endocytosis. Furthermore, subsequent binding and internalization assays revealed that SNX10 knockout significantly inhibits viral entry into host cells. Conversely, the reconstitution of SNX10 fully restored viral entry, thereby confirming the critical and indispensable role of SNX10 in pathogen internalization. Simultaneously, SNX10 was identified as a key factor that promotes endosomal acidification by modulating pH levels, which in turn facilitated the release of the viral genome. Notably, the ablation of SNX10 was found to trigger autophagy activation during infection, thereby maintaining intracellular homeostasis. Additionally, it exerted autonomous antiviral effects through lysosomal degradation pathways. Collectively, these findings demonstrate SNX10 serves as a pivotal regulator of the viral life cycle and underscore its therapeutic potential as a multi-faceted antiviral candidate capable of simultaneously inhibiting viral internalization, viral genomic release, and host-pathogen equilibrium.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SNX10 enhances HCoV-OC43 infection by facilitating viral entry and inhibiting virus-triggered autophagy.\",\"authors\":\"Haobin Li, Huiyi Guo, Binhao Rong, Haowei Li, Wenjiao Wu, Chan Yang, Shuwen Liu\",\"doi\":\"10.1016/j.virs.2025.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ongoing coronavirus epidemic, including the novel coronavirus (COVID-19), continues to pose a significant threat to global public health. Host targets address multiple stages of the viral life cycle and provide diverse opportunities for therapeutic interventions. This study identified sorting nexin 10 (SNX10) as a facilitator of replication of human coronavirus OC43 (HCoV-OC43), underscoring its potential as a novel antiviral target. The knockout of SNX10 significantly suppressed HCoV-OC43 replication both in vivo and in vitro. Immunoprecipitation-mass spectrometry (IP-MS) analysis identified the adaptor protein complex 2 subunit μ1 (AP2M1) as a direct interactor of SNX10. Specifically, SNX10 facilitates phosphorylation of the AP2M1, thereby enhancing clathrin-mediated viral endocytosis. Furthermore, subsequent binding and internalization assays revealed that SNX10 knockout significantly inhibits viral entry into host cells. Conversely, the reconstitution of SNX10 fully restored viral entry, thereby confirming the critical and indispensable role of SNX10 in pathogen internalization. Simultaneously, SNX10 was identified as a key factor that promotes endosomal acidification by modulating pH levels, which in turn facilitated the release of the viral genome. Notably, the ablation of SNX10 was found to trigger autophagy activation during infection, thereby maintaining intracellular homeostasis. Additionally, it exerted autonomous antiviral effects through lysosomal degradation pathways. Collectively, these findings demonstrate SNX10 serves as a pivotal regulator of the viral life cycle and underscore its therapeutic potential as a multi-faceted antiviral candidate capable of simultaneously inhibiting viral internalization, viral genomic release, and host-pathogen equilibrium.</p>\",\"PeriodicalId\":23654,\"journal\":{\"name\":\"Virologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.virs.2025.07.005\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virs.2025.07.005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
SNX10 enhances HCoV-OC43 infection by facilitating viral entry and inhibiting virus-triggered autophagy.
The ongoing coronavirus epidemic, including the novel coronavirus (COVID-19), continues to pose a significant threat to global public health. Host targets address multiple stages of the viral life cycle and provide diverse opportunities for therapeutic interventions. This study identified sorting nexin 10 (SNX10) as a facilitator of replication of human coronavirus OC43 (HCoV-OC43), underscoring its potential as a novel antiviral target. The knockout of SNX10 significantly suppressed HCoV-OC43 replication both in vivo and in vitro. Immunoprecipitation-mass spectrometry (IP-MS) analysis identified the adaptor protein complex 2 subunit μ1 (AP2M1) as a direct interactor of SNX10. Specifically, SNX10 facilitates phosphorylation of the AP2M1, thereby enhancing clathrin-mediated viral endocytosis. Furthermore, subsequent binding and internalization assays revealed that SNX10 knockout significantly inhibits viral entry into host cells. Conversely, the reconstitution of SNX10 fully restored viral entry, thereby confirming the critical and indispensable role of SNX10 in pathogen internalization. Simultaneously, SNX10 was identified as a key factor that promotes endosomal acidification by modulating pH levels, which in turn facilitated the release of the viral genome. Notably, the ablation of SNX10 was found to trigger autophagy activation during infection, thereby maintaining intracellular homeostasis. Additionally, it exerted autonomous antiviral effects through lysosomal degradation pathways. Collectively, these findings demonstrate SNX10 serves as a pivotal regulator of the viral life cycle and underscore its therapeutic potential as a multi-faceted antiviral candidate capable of simultaneously inhibiting viral internalization, viral genomic release, and host-pathogen equilibrium.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769