Bruno de Souza Gonçalves, Carla P Dos Santos, Matheus V Machado, Marina M Toledo, Hélio B Dos Santos, Ralph G Thomé, Grazielle A S Maia, Cristiane Q Tilelli, Luciana E D de Carvalho, Hérica L Santos, Vanessa F Cortes, Maira C Lima, Leandro A Barbosa, José A F P Villar
{"title":"γ -苄基地高辛衍生物减轻小鼠中风模型的神经毒性反应。","authors":"Bruno de Souza Gonçalves, Carla P Dos Santos, Matheus V Machado, Marina M Toledo, Hélio B Dos Santos, Ralph G Thomé, Grazielle A S Maia, Cristiane Q Tilelli, Luciana E D de Carvalho, Hérica L Santos, Vanessa F Cortes, Maira C Lima, Leandro A Barbosa, José A F P Villar","doi":"10.1007/s12975-025-01365-x","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a prevalent age-related disease globally, contributing significantly to neurological dysfunction, disability, and mortality rates. Despite its substantial healthcare burden, effective therapies remain limited. Na/K-ATPase (NKA), beyond its canonical role in ion homeostasis, emerges as a pivotal player in oxidative stress induction, implicating its potential as a therapeutic target. Here, we investigate the efficacy of the semi-synthetic cardiotonic steroid gamma-benzylidene digoxin-15 (BD-15) in ameliorating brain ischemia-induced damage. A total of 44 male Wistar albino rats were randomly assigned to four groups (n = 11/group). The animals were subjected to experimental brain ischemia induction and treated with BD-15. Behavioral assessments revealed a significant improvement in mobility and exploration in BD-15-treated rats compared to brain ischemia alone (P < 0.05). Histological analysis suggested a reduction in brain damage in BD-15-treated rats. Moreover, BD-15 administration attenuated oxidative stress, evidenced by decreased thiobarbituric acid reactive substances levels (TBARS) in the hippocampus and sensory-motor cortex in brain ischemia rats (P < 0.05). Additionally, BD-15 treatment mitigated changes in lipid composition, possibly via modulation of membrane integrity. BD-15 also significantly restored ionic homeostasis in brain ischemia rats, improving the activities of NKA, Ca<sup>2+</sup>-ATPase, Sarcoendoplasmic Reticulum Calcium ATPase, and Mg<sup>2+</sup>-ATPase activities in the hippocampus and sensory-motor cortex (P < 0.05). Notably, acetylcholinesterase activity in brain ischemia rats was improved after BD-15 treatment (P < 0.05), suggesting additional benefits in maintaining neurotransmission following ischemic injury. These findings suggest a multifaceted neuroprotective mechanism of BD-15 in brain ischemia pathology. Our results propose BD-15 as a promising therapeutic strategy for mitigating ischemia-induced neurotoxicity. Further clinical studies are necessary to validate these findings and explore the translational potential of BD-15 in human stroke management.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma-Benzylidene Digoxin Derivative Attenuates Neurotoxicity Response in a Murine Stroke Model.\",\"authors\":\"Bruno de Souza Gonçalves, Carla P Dos Santos, Matheus V Machado, Marina M Toledo, Hélio B Dos Santos, Ralph G Thomé, Grazielle A S Maia, Cristiane Q Tilelli, Luciana E D de Carvalho, Hérica L Santos, Vanessa F Cortes, Maira C Lima, Leandro A Barbosa, José A F P Villar\",\"doi\":\"10.1007/s12975-025-01365-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke is a prevalent age-related disease globally, contributing significantly to neurological dysfunction, disability, and mortality rates. Despite its substantial healthcare burden, effective therapies remain limited. Na/K-ATPase (NKA), beyond its canonical role in ion homeostasis, emerges as a pivotal player in oxidative stress induction, implicating its potential as a therapeutic target. Here, we investigate the efficacy of the semi-synthetic cardiotonic steroid gamma-benzylidene digoxin-15 (BD-15) in ameliorating brain ischemia-induced damage. A total of 44 male Wistar albino rats were randomly assigned to four groups (n = 11/group). The animals were subjected to experimental brain ischemia induction and treated with BD-15. Behavioral assessments revealed a significant improvement in mobility and exploration in BD-15-treated rats compared to brain ischemia alone (P < 0.05). Histological analysis suggested a reduction in brain damage in BD-15-treated rats. Moreover, BD-15 administration attenuated oxidative stress, evidenced by decreased thiobarbituric acid reactive substances levels (TBARS) in the hippocampus and sensory-motor cortex in brain ischemia rats (P < 0.05). Additionally, BD-15 treatment mitigated changes in lipid composition, possibly via modulation of membrane integrity. BD-15 also significantly restored ionic homeostasis in brain ischemia rats, improving the activities of NKA, Ca<sup>2+</sup>-ATPase, Sarcoendoplasmic Reticulum Calcium ATPase, and Mg<sup>2+</sup>-ATPase activities in the hippocampus and sensory-motor cortex (P < 0.05). Notably, acetylcholinesterase activity in brain ischemia rats was improved after BD-15 treatment (P < 0.05), suggesting additional benefits in maintaining neurotransmission following ischemic injury. These findings suggest a multifaceted neuroprotective mechanism of BD-15 in brain ischemia pathology. Our results propose BD-15 as a promising therapeutic strategy for mitigating ischemia-induced neurotoxicity. Further clinical studies are necessary to validate these findings and explore the translational potential of BD-15 in human stroke management.</p>\",\"PeriodicalId\":23237,\"journal\":{\"name\":\"Translational Stroke Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Stroke Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12975-025-01365-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-025-01365-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Gamma-Benzylidene Digoxin Derivative Attenuates Neurotoxicity Response in a Murine Stroke Model.
Stroke is a prevalent age-related disease globally, contributing significantly to neurological dysfunction, disability, and mortality rates. Despite its substantial healthcare burden, effective therapies remain limited. Na/K-ATPase (NKA), beyond its canonical role in ion homeostasis, emerges as a pivotal player in oxidative stress induction, implicating its potential as a therapeutic target. Here, we investigate the efficacy of the semi-synthetic cardiotonic steroid gamma-benzylidene digoxin-15 (BD-15) in ameliorating brain ischemia-induced damage. A total of 44 male Wistar albino rats were randomly assigned to four groups (n = 11/group). The animals were subjected to experimental brain ischemia induction and treated with BD-15. Behavioral assessments revealed a significant improvement in mobility and exploration in BD-15-treated rats compared to brain ischemia alone (P < 0.05). Histological analysis suggested a reduction in brain damage in BD-15-treated rats. Moreover, BD-15 administration attenuated oxidative stress, evidenced by decreased thiobarbituric acid reactive substances levels (TBARS) in the hippocampus and sensory-motor cortex in brain ischemia rats (P < 0.05). Additionally, BD-15 treatment mitigated changes in lipid composition, possibly via modulation of membrane integrity. BD-15 also significantly restored ionic homeostasis in brain ischemia rats, improving the activities of NKA, Ca2+-ATPase, Sarcoendoplasmic Reticulum Calcium ATPase, and Mg2+-ATPase activities in the hippocampus and sensory-motor cortex (P < 0.05). Notably, acetylcholinesterase activity in brain ischemia rats was improved after BD-15 treatment (P < 0.05), suggesting additional benefits in maintaining neurotransmission following ischemic injury. These findings suggest a multifaceted neuroprotective mechanism of BD-15 in brain ischemia pathology. Our results propose BD-15 as a promising therapeutic strategy for mitigating ischemia-induced neurotoxicity. Further clinical studies are necessary to validate these findings and explore the translational potential of BD-15 in human stroke management.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.