Kevin M Posman, Gabriella Iacono, Carmen M Cartisano, Sarah Y Morrison, David Emerson, Nichole N Price, Stephen D Archer
{"title":"瘤胃液中溴仿及其转化产物的抗甲烷作用及其命运。","authors":"Kevin M Posman, Gabriella Iacono, Carmen M Cartisano, Sarah Y Morrison, David Emerson, Nichole N Price, Stephen D Archer","doi":"10.1038/s41598-025-10936-9","DOIUrl":null,"url":null,"abstract":"<p><p>Enteric methane emissions from ruminant livestock are a significant source of atmospheric methane. Efforts to address rising atmospheric methane concentrations have led to an expansion of research into mitigating enteric methane production. One of the most effective approaches utilizes bromoform-containing feed supplements, such as the algae Asparagopsis spp., to inhibit methanogenesis in the rumen. Understanding the fate and persistence of bromoform in the rumen is important for developing safe, effective products and feeding strategies. This study conducted a series of in vitro rumen fluid experiments monitoring bromoform, dibromomethane, and bromomethane concentrations, methane production and several biochemical parameters to understand the inhibitory thresholds and degradation processes of these compounds. Analysis of the rumen fluid confirmed bromoform is rapidly dehalogenated. The half-life of bromoform was 26 min, coinciding with the production of dibromomethane accumulating to 22.1% of the initial bromoform amendment, but no bromomethane was detected. Dibromomethane demonstrated a considerably longer half-life of 775 min. In separate dose-response experiments, bromoform, dibromomethane and bromomethane all exhibited anti-methanogenic activity. Bromoform and dibromomethane produced sigmoidal-relationships between concentration and inhibition at approximately 1-2 µM, and yielded similar effective concentration values (EC50s) for antimethanogenic activity. Experiments using Asparagopsis taxiformis algae revealed less accumulation of bromoform and formation of dibromomethane, likely driven by a slower release from the seaweed material. The A. taxiformis dose response was less effective at inhibiting methane per mole of bromoform added compared with direct bromoform additions. These results have significant implications for understanding the dynamics of bromoform-mediated methane inhibition and will aid the development of effective halocarbon additives, feeding strategies, and testing protocols for bromoform and its degradation byproducts.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"25171"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254416/pdf/","citationCount":"0","resultStr":"{\"title\":\"The antimethanogenic efficacy and fate of bromoform and its transformation products in rumen fluid.\",\"authors\":\"Kevin M Posman, Gabriella Iacono, Carmen M Cartisano, Sarah Y Morrison, David Emerson, Nichole N Price, Stephen D Archer\",\"doi\":\"10.1038/s41598-025-10936-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enteric methane emissions from ruminant livestock are a significant source of atmospheric methane. Efforts to address rising atmospheric methane concentrations have led to an expansion of research into mitigating enteric methane production. One of the most effective approaches utilizes bromoform-containing feed supplements, such as the algae Asparagopsis spp., to inhibit methanogenesis in the rumen. Understanding the fate and persistence of bromoform in the rumen is important for developing safe, effective products and feeding strategies. This study conducted a series of in vitro rumen fluid experiments monitoring bromoform, dibromomethane, and bromomethane concentrations, methane production and several biochemical parameters to understand the inhibitory thresholds and degradation processes of these compounds. Analysis of the rumen fluid confirmed bromoform is rapidly dehalogenated. The half-life of bromoform was 26 min, coinciding with the production of dibromomethane accumulating to 22.1% of the initial bromoform amendment, but no bromomethane was detected. Dibromomethane demonstrated a considerably longer half-life of 775 min. In separate dose-response experiments, bromoform, dibromomethane and bromomethane all exhibited anti-methanogenic activity. Bromoform and dibromomethane produced sigmoidal-relationships between concentration and inhibition at approximately 1-2 µM, and yielded similar effective concentration values (EC50s) for antimethanogenic activity. Experiments using Asparagopsis taxiformis algae revealed less accumulation of bromoform and formation of dibromomethane, likely driven by a slower release from the seaweed material. The A. taxiformis dose response was less effective at inhibiting methane per mole of bromoform added compared with direct bromoform additions. These results have significant implications for understanding the dynamics of bromoform-mediated methane inhibition and will aid the development of effective halocarbon additives, feeding strategies, and testing protocols for bromoform and its degradation byproducts.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"25171\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10936-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10936-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The antimethanogenic efficacy and fate of bromoform and its transformation products in rumen fluid.
Enteric methane emissions from ruminant livestock are a significant source of atmospheric methane. Efforts to address rising atmospheric methane concentrations have led to an expansion of research into mitigating enteric methane production. One of the most effective approaches utilizes bromoform-containing feed supplements, such as the algae Asparagopsis spp., to inhibit methanogenesis in the rumen. Understanding the fate and persistence of bromoform in the rumen is important for developing safe, effective products and feeding strategies. This study conducted a series of in vitro rumen fluid experiments monitoring bromoform, dibromomethane, and bromomethane concentrations, methane production and several biochemical parameters to understand the inhibitory thresholds and degradation processes of these compounds. Analysis of the rumen fluid confirmed bromoform is rapidly dehalogenated. The half-life of bromoform was 26 min, coinciding with the production of dibromomethane accumulating to 22.1% of the initial bromoform amendment, but no bromomethane was detected. Dibromomethane demonstrated a considerably longer half-life of 775 min. In separate dose-response experiments, bromoform, dibromomethane and bromomethane all exhibited anti-methanogenic activity. Bromoform and dibromomethane produced sigmoidal-relationships between concentration and inhibition at approximately 1-2 µM, and yielded similar effective concentration values (EC50s) for antimethanogenic activity. Experiments using Asparagopsis taxiformis algae revealed less accumulation of bromoform and formation of dibromomethane, likely driven by a slower release from the seaweed material. The A. taxiformis dose response was less effective at inhibiting methane per mole of bromoform added compared with direct bromoform additions. These results have significant implications for understanding the dynamics of bromoform-mediated methane inhibition and will aid the development of effective halocarbon additives, feeding strategies, and testing protocols for bromoform and its degradation byproducts.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.