K Dhineshkumar, N Vengadachalam, Suresh Muthusamy, Baseem Khan
{"title":"集成MPPT和双向直流变换器与减少开关多电平逆变器的电动汽车应用。","authors":"K Dhineshkumar, N Vengadachalam, Suresh Muthusamy, Baseem Khan","doi":"10.1038/s41598-025-08700-0","DOIUrl":null,"url":null,"abstract":"<p><p>The necessity for a clean and sustainable Renewable Energy Source (RES) is fueled by the intensifying environmental issue and steady decline of fossil resources. Additionally, expanding use of Electric Vehicles (EVs) across the globe is a result of rising carbon emissions and oil consumption. PV powered EV charging system has the ability to substantially reduce greenhouse emissions when compared with conventional sources-based EV charging system. However, existing PV based EV charging systems lack efficient approaches for adapting optimally to varying environmental conditions. Moreover, the power conversion efficiency may not be optimized leading to lower energy output. Hence, in this work, a Single Ended Primary Inductance Converter (SEPIC) Integrated Isolated Flyback Converter (SIIFC) and Machine Learning Radial Basis Function Neural Network Maximum Power Point Tracking (ML RBFNN MPPT) are used to maximize PV power extraction. EV motor and the grid are powered by a reduced switch 31 level inverter and a 1 Voltage Source Inverter (VSI). In order to effectively synchronize the grid voltage and guarantee that the EV motor runs at the desired speed, an adaptive proportional integral (PI) controller is used. For validating the effectiveness of proposed PV based EV charging station, MATLAB simulations and experimental validations are used. Experimental results demonstrate that the proposed SIIFC and RBFNN MPPT offer an efficiency of 95.4% and 96% respectively. Moreover, the proposed 31-level inverter design increases the reliability and reduces the THD to 2.16%.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"25053"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated MPPT and bidirectional DC DC converter with reduced switch multilevel inverters for electric vehicles applications.\",\"authors\":\"K Dhineshkumar, N Vengadachalam, Suresh Muthusamy, Baseem Khan\",\"doi\":\"10.1038/s41598-025-08700-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The necessity for a clean and sustainable Renewable Energy Source (RES) is fueled by the intensifying environmental issue and steady decline of fossil resources. Additionally, expanding use of Electric Vehicles (EVs) across the globe is a result of rising carbon emissions and oil consumption. PV powered EV charging system has the ability to substantially reduce greenhouse emissions when compared with conventional sources-based EV charging system. However, existing PV based EV charging systems lack efficient approaches for adapting optimally to varying environmental conditions. Moreover, the power conversion efficiency may not be optimized leading to lower energy output. Hence, in this work, a Single Ended Primary Inductance Converter (SEPIC) Integrated Isolated Flyback Converter (SIIFC) and Machine Learning Radial Basis Function Neural Network Maximum Power Point Tracking (ML RBFNN MPPT) are used to maximize PV power extraction. EV motor and the grid are powered by a reduced switch 31 level inverter and a 1 Voltage Source Inverter (VSI). In order to effectively synchronize the grid voltage and guarantee that the EV motor runs at the desired speed, an adaptive proportional integral (PI) controller is used. For validating the effectiveness of proposed PV based EV charging station, MATLAB simulations and experimental validations are used. Experimental results demonstrate that the proposed SIIFC and RBFNN MPPT offer an efficiency of 95.4% and 96% respectively. Moreover, the proposed 31-level inverter design increases the reliability and reduces the THD to 2.16%.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"25053\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-08700-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-08700-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Integrated MPPT and bidirectional DC DC converter with reduced switch multilevel inverters for electric vehicles applications.
The necessity for a clean and sustainable Renewable Energy Source (RES) is fueled by the intensifying environmental issue and steady decline of fossil resources. Additionally, expanding use of Electric Vehicles (EVs) across the globe is a result of rising carbon emissions and oil consumption. PV powered EV charging system has the ability to substantially reduce greenhouse emissions when compared with conventional sources-based EV charging system. However, existing PV based EV charging systems lack efficient approaches for adapting optimally to varying environmental conditions. Moreover, the power conversion efficiency may not be optimized leading to lower energy output. Hence, in this work, a Single Ended Primary Inductance Converter (SEPIC) Integrated Isolated Flyback Converter (SIIFC) and Machine Learning Radial Basis Function Neural Network Maximum Power Point Tracking (ML RBFNN MPPT) are used to maximize PV power extraction. EV motor and the grid are powered by a reduced switch 31 level inverter and a 1 Voltage Source Inverter (VSI). In order to effectively synchronize the grid voltage and guarantee that the EV motor runs at the desired speed, an adaptive proportional integral (PI) controller is used. For validating the effectiveness of proposed PV based EV charging station, MATLAB simulations and experimental validations are used. Experimental results demonstrate that the proposed SIIFC and RBFNN MPPT offer an efficiency of 95.4% and 96% respectively. Moreover, the proposed 31-level inverter design increases the reliability and reduces the THD to 2.16%.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.