Paulina Tomal, Anna Fryzowicz, Jarosław Kabaciński, Dominika Witt, Przemysław Lisiński, Lechosław B Dworak
{"title":"书包负重对7岁男孩和女孩动态步态参数的影响。","authors":"Paulina Tomal, Anna Fryzowicz, Jarosław Kabaciński, Dominika Witt, Przemysław Lisiński, Lechosław B Dworak","doi":"10.3390/s25134219","DOIUrl":null,"url":null,"abstract":"<p><p>School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate the impact of different backpack loads (10%, 15%, and 20% of body weight) on dynamic gait parameters in 7-year-old girls and boys. Twenty-six children (13 girls, 13 boys) participated in the study. Gait analysis was performed using the Footscan® system (RSscan International, Olen, Belgium; 2 m × 0.4 m × 0.02 m, 16,384 sensors) equipped with Footscan software version 7 (Gait 2nd generation), examining peak force (FMAX), peak pressure (PMAX), contact area (CA), and time to peak force (Time to FMAX) across five anatomical foot zones. The study revealed significant changes in all parameters, particularly at loads of 15% and 20% of body weight. Increases in plantar pressure, contact area, and asymmetry were observed, along with delays in time to peak force. These findings support the recommendation that children's backpack loads should not exceed 10% of their body weight to prevent potential adverse effects on postural and musculoskeletal development.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252491/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Influence of School Backpack Load on Dynamic Gait Parameters in 7-Year-Old Boys and Girls.\",\"authors\":\"Paulina Tomal, Anna Fryzowicz, Jarosław Kabaciński, Dominika Witt, Przemysław Lisiński, Lechosław B Dworak\",\"doi\":\"10.3390/s25134219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate the impact of different backpack loads (10%, 15%, and 20% of body weight) on dynamic gait parameters in 7-year-old girls and boys. Twenty-six children (13 girls, 13 boys) participated in the study. Gait analysis was performed using the Footscan® system (RSscan International, Olen, Belgium; 2 m × 0.4 m × 0.02 m, 16,384 sensors) equipped with Footscan software version 7 (Gait 2nd generation), examining peak force (FMAX), peak pressure (PMAX), contact area (CA), and time to peak force (Time to FMAX) across five anatomical foot zones. The study revealed significant changes in all parameters, particularly at loads of 15% and 20% of body weight. Increases in plantar pressure, contact area, and asymmetry were observed, along with delays in time to peak force. These findings support the recommendation that children's backpack loads should not exceed 10% of their body weight to prevent potential adverse effects on postural and musculoskeletal development.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252491/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134219\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134219","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
The Influence of School Backpack Load on Dynamic Gait Parameters in 7-Year-Old Boys and Girls.
School-aged children are routinely exposed to additional physical stress due to carrying school backpacks. These backpacks often exceed recommended limits and can contain not only books and notebooks but also laptops, water bottles, and other personal items. The present study aimed to evaluate the impact of different backpack loads (10%, 15%, and 20% of body weight) on dynamic gait parameters in 7-year-old girls and boys. Twenty-six children (13 girls, 13 boys) participated in the study. Gait analysis was performed using the Footscan® system (RSscan International, Olen, Belgium; 2 m × 0.4 m × 0.02 m, 16,384 sensors) equipped with Footscan software version 7 (Gait 2nd generation), examining peak force (FMAX), peak pressure (PMAX), contact area (CA), and time to peak force (Time to FMAX) across five anatomical foot zones. The study revealed significant changes in all parameters, particularly at loads of 15% and 20% of body weight. Increases in plantar pressure, contact area, and asymmetry were observed, along with delays in time to peak force. These findings support the recommendation that children's backpack loads should not exceed 10% of their body weight to prevent potential adverse effects on postural and musculoskeletal development.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.