水下地震波系统的设计与数据分析。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-03 DOI:10.3390/s25134155
Dawei Xiao, Qin Zhu, Jingzhuo Zhang, Taotao Xie, Qing Ji
{"title":"水下地震波系统的设计与数据分析。","authors":"Dawei Xiao, Qin Zhu, Jingzhuo Zhang, Taotao Xie, Qing Ji","doi":"10.3390/s25134155","DOIUrl":null,"url":null,"abstract":"<p><p>Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage architecture consisting of watertight instrument housing, a communication circuit, and a buoy to realize high-capacity real-time data transmissions. The host computer performs the collaborative optimization of multi-modal hardware architecture and adaptive signal processing algorithms, enabling the detection of ship targets in oceanic environments. Through verification in a water tank and sea trials, the system successfully measured seismic wave signals. An improved ALE-LOFAR (Adaptive Line Enhancer-Low-Frequency Analysis) joint framework, combined with DEMON (Demodulation of Envelope Modulation) demodulation technology, was proposed to conduct the spectral feature analysis of ship seismic wave signals, yielding the low-frequency signal characteristics of vessels. This scheme provides an important method for the covert monitoring of shallow-sea targets, providing early warnings of illegal fishing and ensuring underwater security.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252146/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Design and Data Analysis of an Underwater Seismic Wave System.\",\"authors\":\"Dawei Xiao, Qin Zhu, Jingzhuo Zhang, Taotao Xie, Qing Ji\",\"doi\":\"10.3390/s25134155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage architecture consisting of watertight instrument housing, a communication circuit, and a buoy to realize high-capacity real-time data transmissions. The host computer performs the collaborative optimization of multi-modal hardware architecture and adaptive signal processing algorithms, enabling the detection of ship targets in oceanic environments. Through verification in a water tank and sea trials, the system successfully measured seismic wave signals. An improved ALE-LOFAR (Adaptive Line Enhancer-Low-Frequency Analysis) joint framework, combined with DEMON (Demodulation of Envelope Modulation) demodulation technology, was proposed to conduct the spectral feature analysis of ship seismic wave signals, yielding the low-frequency signal characteristics of vessels. This scheme provides an important method for the covert monitoring of shallow-sea targets, providing early warnings of illegal fishing and ensuring underwater security.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134155\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134155","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

船舶地震波信号是船舶最重要的物理场特征之一。为实现海洋环境下船舶地震波场信号的高精度检测,设计了一种水下地震波信号检测系统。该系统采用水密仪表外壳、通信电路、浮标三级结构,实现大容量实时数据传输。上位机对多模态硬件架构和自适应信号处理算法进行协同优化,实现对海洋环境下船舶目标的检测。通过水箱验证和海试,该系统成功地测量了地震波信号。提出了一种改进的ALE-LOFAR (Adaptive Line enhancement - low-frequency Analysis)联合框架,结合DEMON (Demodulation of Envelope Modulation)解调技术,对船舶地震波信号进行频谱特征分析,得到船舶低频信号特征。该方案为对浅海目标进行隐蔽监控,提供非法捕捞预警,保障水下安全提供了重要手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Design and Data Analysis of an Underwater Seismic Wave System.

Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage architecture consisting of watertight instrument housing, a communication circuit, and a buoy to realize high-capacity real-time data transmissions. The host computer performs the collaborative optimization of multi-modal hardware architecture and adaptive signal processing algorithms, enabling the detection of ship targets in oceanic environments. Through verification in a water tank and sea trials, the system successfully measured seismic wave signals. An improved ALE-LOFAR (Adaptive Line Enhancer-Low-Frequency Analysis) joint framework, combined with DEMON (Demodulation of Envelope Modulation) demodulation technology, was proposed to conduct the spectral feature analysis of ship seismic wave signals, yielding the low-frequency signal characteristics of vessels. This scheme provides an important method for the covert monitoring of shallow-sea targets, providing early warnings of illegal fishing and ensuring underwater security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信