Qingjun Peng, Hantao Du, Zezhong Zheng, Haowei Zhu, Yuhang Fang
{"title":"基于机器学习的单相变压器励磁涌流磁场预测。","authors":"Qingjun Peng, Hantao Du, Zezhong Zheng, Haowei Zhu, Yuhang Fang","doi":"10.3390/s25134150","DOIUrl":null,"url":null,"abstract":"<p><p>With the digital transformation of power systems, higher demands are being placed on smart grids for the timely and precise acquisition of the status of transmission and transformation equipment during operational and maintenance processes. When a transformer is energized under no-load conditions, an excitation inrush phenomenon occurs in the windings, posing a hazard to the stable operation of the power system. A machine learning approach is proposed in this paper for predicting the internal magnetic field of transformers under excitation inrush condition, enabling the monitoring of transformer operation status. Experimental results indicate that the mean absolute percentage error (MAPE) for predicting the transformer's magnetic field using the deep neural network (DNN) model is 4.02%. The average time to obtain a single magnetic field data prediction is 0.41 s, which is 46.68 times faster than traditional finite element analysis (FEA) method, validating the effectiveness of machine learning for magnetic field prediction.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of Magnetic Fields in Single-Phase Transformers Under Excitation Inrush Based on Machine Learning.\",\"authors\":\"Qingjun Peng, Hantao Du, Zezhong Zheng, Haowei Zhu, Yuhang Fang\",\"doi\":\"10.3390/s25134150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the digital transformation of power systems, higher demands are being placed on smart grids for the timely and precise acquisition of the status of transmission and transformation equipment during operational and maintenance processes. When a transformer is energized under no-load conditions, an excitation inrush phenomenon occurs in the windings, posing a hazard to the stable operation of the power system. A machine learning approach is proposed in this paper for predicting the internal magnetic field of transformers under excitation inrush condition, enabling the monitoring of transformer operation status. Experimental results indicate that the mean absolute percentage error (MAPE) for predicting the transformer's magnetic field using the deep neural network (DNN) model is 4.02%. The average time to obtain a single magnetic field data prediction is 0.41 s, which is 46.68 times faster than traditional finite element analysis (FEA) method, validating the effectiveness of machine learning for magnetic field prediction.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134150\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134150","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Prediction of Magnetic Fields in Single-Phase Transformers Under Excitation Inrush Based on Machine Learning.
With the digital transformation of power systems, higher demands are being placed on smart grids for the timely and precise acquisition of the status of transmission and transformation equipment during operational and maintenance processes. When a transformer is energized under no-load conditions, an excitation inrush phenomenon occurs in the windings, posing a hazard to the stable operation of the power system. A machine learning approach is proposed in this paper for predicting the internal magnetic field of transformers under excitation inrush condition, enabling the monitoring of transformer operation status. Experimental results indicate that the mean absolute percentage error (MAPE) for predicting the transformer's magnetic field using the deep neural network (DNN) model is 4.02%. The average time to obtain a single magnetic field data prediction is 0.41 s, which is 46.68 times faster than traditional finite element analysis (FEA) method, validating the effectiveness of machine learning for magnetic field prediction.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.