Estefanía Chaves, Alberto Barontini, Nuno Mendes, Víctor Compán
{"title":"优化传感器安置在文物建筑:基于模型和数据驱动方法的比较。","authors":"Estefanía Chaves, Alberto Barontini, Nuno Mendes, Víctor Compán","doi":"10.3390/s25134212","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term preservation of heritage structures relies on effective Structural Health Monitoring (SHM) systems, where sensor placement is key to ensuring early damage detection and guiding conservation efforts. Optimal Sensor Placement (OSP) methods offer a systematic framework to identify efficient sensor configurations, yet their application in historical buildings remains limited. Typically, OSP is driven by numerical models; however, in the context of heritage structures, these models are often affected by substantial uncertainties due to irregular geometries, heterogeneous materials, and unknown boundary conditions. In this scenario, data-driven approaches become particularly attractive as they eliminate the need for potentially unreliable models by relying directly on experimentally identified dynamic properties. This study investigates how the choice of input data influences OSP outcomes, using the Church of Santa Ana in Seville, Spain, as a representative case. Three data sources are considered: an uncalibrated numerical model, a calibrated model, and a data-driven set of modal parameters. Several OSP methods are implemented and systematically compared. The results underscore the decisive impact of the input data on the optimisation process. Although calibrated models may improve certain modal parameters, they do not necessarily translate into better sensor configurations. This highlights the potential of data-driven strategies to enhance the robustness and applicability of SHM systems in the complex and uncertain context of heritage buildings.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimising Sensor Placement in Heritage Buildings: A Comparison of Model-Based and Data-Driven Approaches.\",\"authors\":\"Estefanía Chaves, Alberto Barontini, Nuno Mendes, Víctor Compán\",\"doi\":\"10.3390/s25134212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The long-term preservation of heritage structures relies on effective Structural Health Monitoring (SHM) systems, where sensor placement is key to ensuring early damage detection and guiding conservation efforts. Optimal Sensor Placement (OSP) methods offer a systematic framework to identify efficient sensor configurations, yet their application in historical buildings remains limited. Typically, OSP is driven by numerical models; however, in the context of heritage structures, these models are often affected by substantial uncertainties due to irregular geometries, heterogeneous materials, and unknown boundary conditions. In this scenario, data-driven approaches become particularly attractive as they eliminate the need for potentially unreliable models by relying directly on experimentally identified dynamic properties. This study investigates how the choice of input data influences OSP outcomes, using the Church of Santa Ana in Seville, Spain, as a representative case. Three data sources are considered: an uncalibrated numerical model, a calibrated model, and a data-driven set of modal parameters. Several OSP methods are implemented and systematically compared. The results underscore the decisive impact of the input data on the optimisation process. Although calibrated models may improve certain modal parameters, they do not necessarily translate into better sensor configurations. This highlights the potential of data-driven strategies to enhance the robustness and applicability of SHM systems in the complex and uncertain context of heritage buildings.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134212\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134212","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Optimising Sensor Placement in Heritage Buildings: A Comparison of Model-Based and Data-Driven Approaches.
The long-term preservation of heritage structures relies on effective Structural Health Monitoring (SHM) systems, where sensor placement is key to ensuring early damage detection and guiding conservation efforts. Optimal Sensor Placement (OSP) methods offer a systematic framework to identify efficient sensor configurations, yet their application in historical buildings remains limited. Typically, OSP is driven by numerical models; however, in the context of heritage structures, these models are often affected by substantial uncertainties due to irregular geometries, heterogeneous materials, and unknown boundary conditions. In this scenario, data-driven approaches become particularly attractive as they eliminate the need for potentially unreliable models by relying directly on experimentally identified dynamic properties. This study investigates how the choice of input data influences OSP outcomes, using the Church of Santa Ana in Seville, Spain, as a representative case. Three data sources are considered: an uncalibrated numerical model, a calibrated model, and a data-driven set of modal parameters. Several OSP methods are implemented and systematically compared. The results underscore the decisive impact of the input data on the optimisation process. Although calibrated models may improve certain modal parameters, they do not necessarily translate into better sensor configurations. This highlights the potential of data-driven strategies to enhance the robustness and applicability of SHM systems in the complex and uncertain context of heritage buildings.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.