He Li, Shixian Sun, Chuang Dong, Qinglei Qi, Cong Zhao, Zufeng Fu, Peng Yu, Jiajia Liu
{"title":"基于关键感知交叉口的应急通信混合传感器网络覆盖空洞恢复。","authors":"He Li, Shixian Sun, Chuang Dong, Qinglei Qi, Cong Zhao, Zufeng Fu, Peng Yu, Jiajia Liu","doi":"10.3390/s25134217","DOIUrl":null,"url":null,"abstract":"<p><p>Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, thus creating coverage holes in the monitored area. Coverage holes can cause the network to fail to deliver high-quality data and can also affect network performance and the quality of service. Therefore, the detection and recovery of coverage holes are major issues in WSNs. In response to these issues, we propose a method for detecting and recovering coverage holes in wireless sensor networks. This method first divides the network into equally sized units, and then selects a representative node for each unit based on two conditions, called an agent. Then, the percentage of each unit covered by nodes can be accurately calculated and holes can be detected. Finally, the holes are recovered using the average of the key perceptual intersections as the initial value of the global optimal point of the particle swarm optimization algorithm. Simulation experiments show that the algorithm proposed in this paper reduces network energy consumption by 6.68%, decreases the distance traveled by mobile nodes by 8.51%, and increases the percentage of network hole recovery by 2.16%, compared with other algorithms.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252499/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coverage Hole Recovery in Hybrid Sensor Networks Based on Key Perceptual Intersections for Emergency Communications.\",\"authors\":\"He Li, Shixian Sun, Chuang Dong, Qinglei Qi, Cong Zhao, Zufeng Fu, Peng Yu, Jiajia Liu\",\"doi\":\"10.3390/s25134217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, thus creating coverage holes in the monitored area. Coverage holes can cause the network to fail to deliver high-quality data and can also affect network performance and the quality of service. Therefore, the detection and recovery of coverage holes are major issues in WSNs. In response to these issues, we propose a method for detecting and recovering coverage holes in wireless sensor networks. This method first divides the network into equally sized units, and then selects a representative node for each unit based on two conditions, called an agent. Then, the percentage of each unit covered by nodes can be accurately calculated and holes can be detected. Finally, the holes are recovered using the average of the key perceptual intersections as the initial value of the global optimal point of the particle swarm optimization algorithm. Simulation experiments show that the algorithm proposed in this paper reduces network energy consumption by 6.68%, decreases the distance traveled by mobile nodes by 8.51%, and increases the percentage of network hole recovery by 2.16%, compared with other algorithms.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134217\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134217","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Coverage Hole Recovery in Hybrid Sensor Networks Based on Key Perceptual Intersections for Emergency Communications.
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, thus creating coverage holes in the monitored area. Coverage holes can cause the network to fail to deliver high-quality data and can also affect network performance and the quality of service. Therefore, the detection and recovery of coverage holes are major issues in WSNs. In response to these issues, we propose a method for detecting and recovering coverage holes in wireless sensor networks. This method first divides the network into equally sized units, and then selects a representative node for each unit based on two conditions, called an agent. Then, the percentage of each unit covered by nodes can be accurately calculated and holes can be detected. Finally, the holes are recovered using the average of the key perceptual intersections as the initial value of the global optimal point of the particle swarm optimization algorithm. Simulation experiments show that the algorithm proposed in this paper reduces network energy consumption by 6.68%, decreases the distance traveled by mobile nodes by 8.51%, and increases the percentage of network hole recovery by 2.16%, compared with other algorithms.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.