用于SERS平台的硼氢化物合成纳米银:梯度增强间接葡萄糖检测和分析。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-07-03 DOI:10.3390/s25134143
Viktoriia Bakal, Olga Gusliakova, Anastasia Kartashova, Mariia Saveleva, Polina Demina, Ilya Kozhevnikov, Evgenii Ryabov, Daniil Bratashov, Ekaterina Prikhozhdenko
{"title":"用于SERS平台的硼氢化物合成纳米银:梯度增强间接葡萄糖检测和分析。","authors":"Viktoriia Bakal, Olga Gusliakova, Anastasia Kartashova, Mariia Saveleva, Polina Demina, Ilya Kozhevnikov, Evgenii Ryabov, Daniil Bratashov, Ekaterina Prikhozhdenko","doi":"10.3390/s25134143","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, non-invasive methods for the analysis of biological fluids have attracted growing interest. In this study, we propose a straightforward approach to fabricating silver nanoparticle (AgNP)-coated non-woven polyacrylonitrile substrates for surface-enhanced Raman scattering (SERS). AgNPs were synthesized directly on the substrate using borohydride reduction, ensuring uniform distribution. The optimized SERS substrates exhibited a high enhancement factor (EF) of up to 10<sup>5</sup> for the detection of 4-mercaptobenzoic acid (4-MBA). To enable glucose sensing, the substrates were further functionalized with glucose oxidase (GOx), allowing detection in the 1-10 mM range. Machine learning classification and regression models based on gradient boosting were employed to analyze SERS spectra, enhancing the accuracy of quantitative predictions (R<sup>2</sup> = 0.971, accuracy = 0.938, limit of detection = 0.66 mM). These results highlight the potential of AgNP-modified substrates for reliable and reusable biochemical sensing applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 13","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting.\",\"authors\":\"Viktoriia Bakal, Olga Gusliakova, Anastasia Kartashova, Mariia Saveleva, Polina Demina, Ilya Kozhevnikov, Evgenii Ryabov, Daniil Bratashov, Ekaterina Prikhozhdenko\",\"doi\":\"10.3390/s25134143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, non-invasive methods for the analysis of biological fluids have attracted growing interest. In this study, we propose a straightforward approach to fabricating silver nanoparticle (AgNP)-coated non-woven polyacrylonitrile substrates for surface-enhanced Raman scattering (SERS). AgNPs were synthesized directly on the substrate using borohydride reduction, ensuring uniform distribution. The optimized SERS substrates exhibited a high enhancement factor (EF) of up to 10<sup>5</sup> for the detection of 4-mercaptobenzoic acid (4-MBA). To enable glucose sensing, the substrates were further functionalized with glucose oxidase (GOx), allowing detection in the 1-10 mM range. Machine learning classification and regression models based on gradient boosting were employed to analyze SERS spectra, enhancing the accuracy of quantitative predictions (R<sup>2</sup> = 0.971, accuracy = 0.938, limit of detection = 0.66 mM). These results highlight the potential of AgNP-modified substrates for reliable and reusable biochemical sensing applications.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 13\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25134143\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25134143","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,生物体液的非侵入性分析方法引起了越来越多的关注。在这项研究中,我们提出了一种用于表面增强拉曼散射(SERS)的纳米银(AgNP)涂层无纺布聚丙烯腈衬底的直接方法。采用硼氢化物还原法直接在衬底上合成AgNPs,保证了AgNPs的均匀分布。优化后的SERS底物检测4-巯基苯甲酸(4-MBA)的增强因子(EF)高达105。为了实现葡萄糖传感,底物进一步用葡萄糖氧化酶(GOx)功能化,允许在1-10 mM范围内检测。采用基于梯度增强的机器学习分类和回归模型对SERS光谱进行分析,提高了定量预测的准确性(R2 = 0.971,准确率= 0.938,检出限= 0.66 mM)。这些结果突出了agnp修饰底物在可靠和可重复使用的生化传感应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting.

In recent years, non-invasive methods for the analysis of biological fluids have attracted growing interest. In this study, we propose a straightforward approach to fabricating silver nanoparticle (AgNP)-coated non-woven polyacrylonitrile substrates for surface-enhanced Raman scattering (SERS). AgNPs were synthesized directly on the substrate using borohydride reduction, ensuring uniform distribution. The optimized SERS substrates exhibited a high enhancement factor (EF) of up to 105 for the detection of 4-mercaptobenzoic acid (4-MBA). To enable glucose sensing, the substrates were further functionalized with glucose oxidase (GOx), allowing detection in the 1-10 mM range. Machine learning classification and regression models based on gradient boosting were employed to analyze SERS spectra, enhancing the accuracy of quantitative predictions (R2 = 0.971, accuracy = 0.938, limit of detection = 0.66 mM). These results highlight the potential of AgNP-modified substrates for reliable and reusable biochemical sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信