两亲性梳状共聚物在溶液中自组装成胶束和囊泡。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-07-04 DOI:10.3390/polym17131870
Qiaoyue Chen, Kun Tian, Ruiqi Zhu, Mingming Ding, Zhanwen Xu
{"title":"两亲性梳状共聚物在溶液中自组装成胶束和囊泡。","authors":"Qiaoyue Chen, Kun Tian, Ruiqi Zhu, Mingming Ding, Zhanwen Xu","doi":"10.3390/polym17131870","DOIUrl":null,"url":null,"abstract":"<p><p>Combining Brownian dynamics simulations and self-consistent field theory, we demonstrate that stable assembled structures, such as vesicles, toroidal micelles, bowl-like micelles, sheet-like micelles, non-spherical vesicles, and cylindrical micelles, are dependent on the molecular parameters of amphiphilic comb-like copolymers. Importantly, we find that vesicle formation involves two intermediate states, sheet-like and bowl-like micelles, and the difference in their free energies is minimal, which illustrates the coexisting phase between them. Moreover, the assembled vesicles can be modulated in the membrane thickness with overall size, unchanged only by adjusting the backbone length. We also demonstrate the coexistence of toroidal and cylindrical micelles because neither structure has a significant advantage over the other in free energy. Our work points out how to obtain different morphologies by adjusting the molecular parameters of amphiphilic comb-like copolymers, instilling confidence in their potential for stable drug encapsulation and enhanced targeted drug delivery.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251614/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution.\",\"authors\":\"Qiaoyue Chen, Kun Tian, Ruiqi Zhu, Mingming Ding, Zhanwen Xu\",\"doi\":\"10.3390/polym17131870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combining Brownian dynamics simulations and self-consistent field theory, we demonstrate that stable assembled structures, such as vesicles, toroidal micelles, bowl-like micelles, sheet-like micelles, non-spherical vesicles, and cylindrical micelles, are dependent on the molecular parameters of amphiphilic comb-like copolymers. Importantly, we find that vesicle formation involves two intermediate states, sheet-like and bowl-like micelles, and the difference in their free energies is minimal, which illustrates the coexisting phase between them. Moreover, the assembled vesicles can be modulated in the membrane thickness with overall size, unchanged only by adjusting the backbone length. We also demonstrate the coexistence of toroidal and cylindrical micelles because neither structure has a significant advantage over the other in free energy. Our work points out how to obtain different morphologies by adjusting the molecular parameters of amphiphilic comb-like copolymers, instilling confidence in their potential for stable drug encapsulation and enhanced targeted drug delivery.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 13\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251614/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17131870\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17131870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

结合布朗动力学模拟和自洽场理论,我们证明了稳定的组装结构,如囊泡,环形胶束,碗状胶束,片状胶束,非球形囊泡和圆柱形胶束,依赖于两亲性梳状共聚物的分子参数。重要的是,我们发现囊泡的形成涉及两种中间态,片状胶束和碗状胶束,它们的自由能差很小,这说明了它们之间的共存相。此外,组装囊泡的膜厚度随整体尺寸的变化而变化,仅通过调整骨架长度即可保持不变。我们还证明了环形和圆柱形胶束的共存,因为两种结构在自由能上都没有明显的优势。我们的工作指出了如何通过调整两亲性梳状共聚物的分子参数来获得不同的形态,从而使人们相信它们具有稳定的药物包封和增强靶向药物传递的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution.

Combining Brownian dynamics simulations and self-consistent field theory, we demonstrate that stable assembled structures, such as vesicles, toroidal micelles, bowl-like micelles, sheet-like micelles, non-spherical vesicles, and cylindrical micelles, are dependent on the molecular parameters of amphiphilic comb-like copolymers. Importantly, we find that vesicle formation involves two intermediate states, sheet-like and bowl-like micelles, and the difference in their free energies is minimal, which illustrates the coexisting phase between them. Moreover, the assembled vesicles can be modulated in the membrane thickness with overall size, unchanged only by adjusting the backbone length. We also demonstrate the coexistence of toroidal and cylindrical micelles because neither structure has a significant advantage over the other in free energy. Our work points out how to obtain different morphologies by adjusting the molecular parameters of amphiphilic comb-like copolymers, instilling confidence in their potential for stable drug encapsulation and enhanced targeted drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信