含抗炎苦胺B的仿生牛跟腱胶原复合膜促进皮肤伤口愈合。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-07-04 DOI:10.3390/polym17131874
Ruting Luo, Yujie Mu, Le Zhao, Jinglin Hua, Lixin Cao, Danting Chen, Kun Li, Zhenkai Jin, Yanchuan Guo, Bing Zhang, Min Wang
{"title":"含抗炎苦胺B的仿生牛跟腱胶原复合膜促进皮肤伤口愈合。","authors":"Ruting Luo, Yujie Mu, Le Zhao, Jinglin Hua, Lixin Cao, Danting Chen, Kun Li, Zhenkai Jin, Yanchuan Guo, Bing Zhang, Min Wang","doi":"10.3390/polym17131874","DOIUrl":null,"url":null,"abstract":"<p><p>Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component of the dermis. As a wound dressing, collagen not only provides nutrients to wounds but also enhances the immune response in the pre-healing phase, making it an excellent biomaterial for healing. In this study, we used electrospinning and freeze-drying technology to prepare a Bovine Achilles Tendon Collagen (BATC) electrospun composite membrane and a BATC freeze-dried composite membrane using BATC as a substrate supplemented with 16.7% Polyethylene oxide (PEO) and 0.2% Kukoamine B (KuB). The physicochemical properties and biocompatibility of the BATC composite membrane were verified via scanning electron microscopy, Fourier-transform infrared spectroscopy, and DSC analysis and by measuring the DPPH radical-scavenging capacity, water absorption, water retention, in vitro drug release, and extract cytotoxicity. The BATC composite membrane was found to have a significant effect on skin wound healing, especially in the middle stage of healing, in a mouse full-thickness skin injury model. The BATC/PEO/KuB electrospun composite membrane (EBPK) had the best capacity for promoting wound healing and can be used as a wound dressing for in-depth research and development, and KuB, a monomer component with a clear structure and mechanism of action, can be used as a candidate component of composite dressings.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bionic Bovine Achilles Tendon Collagen Composite Membrane Loaded with Anti-Inflammatory Kukoamine B Promotes Skin Wound Healing.\",\"authors\":\"Ruting Luo, Yujie Mu, Le Zhao, Jinglin Hua, Lixin Cao, Danting Chen, Kun Li, Zhenkai Jin, Yanchuan Guo, Bing Zhang, Min Wang\",\"doi\":\"10.3390/polym17131874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component of the dermis. As a wound dressing, collagen not only provides nutrients to wounds but also enhances the immune response in the pre-healing phase, making it an excellent biomaterial for healing. In this study, we used electrospinning and freeze-drying technology to prepare a Bovine Achilles Tendon Collagen (BATC) electrospun composite membrane and a BATC freeze-dried composite membrane using BATC as a substrate supplemented with 16.7% Polyethylene oxide (PEO) and 0.2% Kukoamine B (KuB). The physicochemical properties and biocompatibility of the BATC composite membrane were verified via scanning electron microscopy, Fourier-transform infrared spectroscopy, and DSC analysis and by measuring the DPPH radical-scavenging capacity, water absorption, water retention, in vitro drug release, and extract cytotoxicity. The BATC composite membrane was found to have a significant effect on skin wound healing, especially in the middle stage of healing, in a mouse full-thickness skin injury model. The BATC/PEO/KuB electrospun composite membrane (EBPK) had the best capacity for promoting wound healing and can be used as a wound dressing for in-depth research and development, and KuB, a monomer component with a clear structure and mechanism of action, can be used as a candidate component of composite dressings.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 13\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17131874\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17131874","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

皮肤是人体与外界的第一道防线,由于各种原因,皮肤经常受到外界的伤害和创伤。胶原蛋白是细胞外基质的结构蛋白,是真皮的重要组成部分。作为一种伤口敷料,胶原蛋白不仅为伤口提供营养,还能增强愈合前阶段的免疫反应,是一种极好的愈合生物材料。本研究采用静电纺丝和冷冻干燥技术,以BATC为底物,添加16.7%聚乙烯氧化物(PEO)和0.2%库koamine B (KuB),制备了BATC静电纺丝复合膜和BATC冻干复合膜。通过扫描电镜、傅里叶变换红外光谱、DSC分析、DPPH自由基清除能力、吸水率、保水率、体外药物释放率、提取物细胞毒性等测试,验证了BATC复合膜的理化性质和生物相容性。在小鼠全层皮肤损伤模型中,发现BATC复合膜对皮肤创面愈合有显著的促进作用,尤其是在愈合中期。BATC/PEO/KuB电纺丝复合膜(EBPK)促进伤口愈合的能力最好,可以作为伤口敷料进行深入的研究和开发,而KuB作为一种结构清晰、作用机制明确的单体组分,可以作为复合敷料的候选组分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bionic Bovine Achilles Tendon Collagen Composite Membrane Loaded with Anti-Inflammatory Kukoamine B Promotes Skin Wound Healing.

Skin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component of the dermis. As a wound dressing, collagen not only provides nutrients to wounds but also enhances the immune response in the pre-healing phase, making it an excellent biomaterial for healing. In this study, we used electrospinning and freeze-drying technology to prepare a Bovine Achilles Tendon Collagen (BATC) electrospun composite membrane and a BATC freeze-dried composite membrane using BATC as a substrate supplemented with 16.7% Polyethylene oxide (PEO) and 0.2% Kukoamine B (KuB). The physicochemical properties and biocompatibility of the BATC composite membrane were verified via scanning electron microscopy, Fourier-transform infrared spectroscopy, and DSC analysis and by measuring the DPPH radical-scavenging capacity, water absorption, water retention, in vitro drug release, and extract cytotoxicity. The BATC composite membrane was found to have a significant effect on skin wound healing, especially in the middle stage of healing, in a mouse full-thickness skin injury model. The BATC/PEO/KuB electrospun composite membrane (EBPK) had the best capacity for promoting wound healing and can be used as a wound dressing for in-depth research and development, and KuB, a monomer component with a clear structure and mechanism of action, can be used as a candidate component of composite dressings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信