Omar E Uribe-Juárez, Luis A Silva Valdéz, Flor Ivon Vivar Velázquez, Fidel Montoya-Molina, José A Moreno-Razo, María G Flores-Sánchez, Juan Morales-Corona, Roberto Olayo-González
{"title":"利用开源软件利用高光谱拉曼成像分析静电纺丝纤维的化学非均质性。","authors":"Omar E Uribe-Juárez, Luis A Silva Valdéz, Flor Ivon Vivar Velázquez, Fidel Montoya-Molina, José A Moreno-Razo, María G Flores-Sánchez, Juan Morales-Corona, Roberto Olayo-González","doi":"10.3390/polym17131883","DOIUrl":null,"url":null,"abstract":"<p><p>Electrospinning is a versatile technique for producing porous nanofibers with a high specific surface area, making them ideal for several tissue engineering applications. Although Raman spectroscopy has been widely employed to characterize electrospun materials, but most studies report bulk-averaged properties without addressing the spatial heterogeneity of their chemical composition. Raman imaging has emerged as a promising tool to overcome this limitation; however, challenges remain, including limited sensitivity for detecting minor components, reliance on distinctive high-intensity bands, and the frequent use of commercial software. In this study, we present a methodology based on Raman hyperspectral image processing using open-source software (Python), capable of identifying components present at concentrations as low as 2% and 5%, even in the absence of exclusive bands of high or medium intensity, respectively. The proposed approach integrates spectral segmentation, end member extraction via the N-FINDR algorithm, and analysis of average spectra to map and characterize the chemical heterogeneity within electrospun fibers. Finally, its performance is compared with the traditional approach based on band intensities, highlighting improvements in sensitivity and the detection of weak signals.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software.\",\"authors\":\"Omar E Uribe-Juárez, Luis A Silva Valdéz, Flor Ivon Vivar Velázquez, Fidel Montoya-Molina, José A Moreno-Razo, María G Flores-Sánchez, Juan Morales-Corona, Roberto Olayo-González\",\"doi\":\"10.3390/polym17131883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrospinning is a versatile technique for producing porous nanofibers with a high specific surface area, making them ideal for several tissue engineering applications. Although Raman spectroscopy has been widely employed to characterize electrospun materials, but most studies report bulk-averaged properties without addressing the spatial heterogeneity of their chemical composition. Raman imaging has emerged as a promising tool to overcome this limitation; however, challenges remain, including limited sensitivity for detecting minor components, reliance on distinctive high-intensity bands, and the frequent use of commercial software. In this study, we present a methodology based on Raman hyperspectral image processing using open-source software (Python), capable of identifying components present at concentrations as low as 2% and 5%, even in the absence of exclusive bands of high or medium intensity, respectively. The proposed approach integrates spectral segmentation, end member extraction via the N-FINDR algorithm, and analysis of average spectra to map and characterize the chemical heterogeneity within electrospun fibers. Finally, its performance is compared with the traditional approach based on band intensities, highlighting improvements in sensitivity and the detection of weak signals.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 13\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17131883\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17131883","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Analysis of Chemical Heterogeneity in Electrospun Fibers Through Hyperspectral Raman Imaging Using Open-Source Software.
Electrospinning is a versatile technique for producing porous nanofibers with a high specific surface area, making them ideal for several tissue engineering applications. Although Raman spectroscopy has been widely employed to characterize electrospun materials, but most studies report bulk-averaged properties without addressing the spatial heterogeneity of their chemical composition. Raman imaging has emerged as a promising tool to overcome this limitation; however, challenges remain, including limited sensitivity for detecting minor components, reliance on distinctive high-intensity bands, and the frequent use of commercial software. In this study, we present a methodology based on Raman hyperspectral image processing using open-source software (Python), capable of identifying components present at concentrations as low as 2% and 5%, even in the absence of exclusive bands of high or medium intensity, respectively. The proposed approach integrates spectral segmentation, end member extraction via the N-FINDR algorithm, and analysis of average spectra to map and characterize the chemical heterogeneity within electrospun fibers. Finally, its performance is compared with the traditional approach based on band intensities, highlighting improvements in sensitivity and the detection of weak signals.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.