{"title":"预测和优化3D生物打印聚合物可打印性的机器学习。","authors":"Junjie Yu, Danyu Yao, Ling Wang, Mingen Xu","doi":"10.3390/polym17131873","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting has emerged as a highly promising technology within the realms of tissue engineering and regenerative medicine. The assessment of printability is essential for ensuring the quality of bio-printed constructs and the functionality of the resultant tissues. Polymer materials, extensively utilized as bioink materials in extrusion-based bioprinting, have garnered significant attention from researchers due to the critical need for evaluating and optimizing their printability. Machine learning, a powerful data-driven technology, has attracted increasing attention in the evaluation and optimization of 3D bioprinting printability in recent years. This review provides an overview of the application of machine learning in the printability research of polymers for 3D bioprinting, encompassing the analysis of factors influencing printability (such as material and printing parameters), the development of predictive models, and the formulation of optimization strategies. Additionally, the review briefly explores the utilization of machine learning in predicting cell viability, evaluates the advanced nature and developmental potential of machine learning in 3D bioprinting, and examines the current challenges and future trends.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 13","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252067/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning in Predicting and Optimizing Polymer Printability for 3D Bioprinting.\",\"authors\":\"Junjie Yu, Danyu Yao, Ling Wang, Mingen Xu\",\"doi\":\"10.3390/polym17131873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) bioprinting has emerged as a highly promising technology within the realms of tissue engineering and regenerative medicine. The assessment of printability is essential for ensuring the quality of bio-printed constructs and the functionality of the resultant tissues. Polymer materials, extensively utilized as bioink materials in extrusion-based bioprinting, have garnered significant attention from researchers due to the critical need for evaluating and optimizing their printability. Machine learning, a powerful data-driven technology, has attracted increasing attention in the evaluation and optimization of 3D bioprinting printability in recent years. This review provides an overview of the application of machine learning in the printability research of polymers for 3D bioprinting, encompassing the analysis of factors influencing printability (such as material and printing parameters), the development of predictive models, and the formulation of optimization strategies. Additionally, the review briefly explores the utilization of machine learning in predicting cell viability, evaluates the advanced nature and developmental potential of machine learning in 3D bioprinting, and examines the current challenges and future trends.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 13\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252067/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17131873\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17131873","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Machine Learning in Predicting and Optimizing Polymer Printability for 3D Bioprinting.
Three-dimensional (3D) bioprinting has emerged as a highly promising technology within the realms of tissue engineering and regenerative medicine. The assessment of printability is essential for ensuring the quality of bio-printed constructs and the functionality of the resultant tissues. Polymer materials, extensively utilized as bioink materials in extrusion-based bioprinting, have garnered significant attention from researchers due to the critical need for evaluating and optimizing their printability. Machine learning, a powerful data-driven technology, has attracted increasing attention in the evaluation and optimization of 3D bioprinting printability in recent years. This review provides an overview of the application of machine learning in the printability research of polymers for 3D bioprinting, encompassing the analysis of factors influencing printability (such as material and printing parameters), the development of predictive models, and the formulation of optimization strategies. Additionally, the review briefly explores the utilization of machine learning in predicting cell viability, evaluates the advanced nature and developmental potential of machine learning in 3D bioprinting, and examines the current challenges and future trends.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.